These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 12237049)

  • 1. Non-linear prediction for oesophageal voice analysis.
    Landini L; Manfredi C; Positano V; Santarelli MF; Vanello N
    Med Eng Phys; 2002; 24(7-8):529-33. PubMed ID: 12237049
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A one-dimensional search method with stable 1-norm solution for linear prediction.
    Jayesh MK; Ramalingam CS
    J Acoust Soc Am; 2017 Aug; 142(2):EL170. PubMed ID: 28863564
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optimized Nonlinear Dynamic Analysis of Pathologic Voices With Laryngeal Paralysis Based on the Minimum Embedding Dimension.
    Huang N; Zhang Y; Calawerts W; Jiang JJ
    J Voice; 2017 Mar; 31(2):249.e1-249.e7. PubMed ID: 27553258
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optimal subband Kalman filter for normal and oesophageal speech enhancement.
    Ishaq R; GarcĂ­a Zapirain B
    Biomed Mater Eng; 2014; 24(6):3569-78. PubMed ID: 25227070
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Automatic Voice Pathology Detection With Running Speech by Using Estimation of Auditory Spectrum and Cepstral Coefficients Based on the All-Pole Model.
    Ali Z; Elamvazuthi I; Alsulaiman M; Muhammad G
    J Voice; 2016 Nov; 30(6):757.e7-757.e19. PubMed ID: 26522263
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Exploration of an Objective Model for Roughness With Several Acoustic Markers.
    Latoszek BBV; De Bodt M; Gerrits E; Maryn Y
    J Voice; 2018 Mar; 32(2):149-161. PubMed ID: 28572016
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Statistical voice activity detection in kernel space.
    Kim DK; Chang JH
    J Acoust Soc Am; 2012 Oct; 132(4):EL303-9. PubMed ID: 23039569
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Intra- and Inter-database Study for Arabic, English, and German Databases: Do Conventional Speech Features Detect Voice Pathology?
    Ali Z; Alsulaiman M; Muhammad G; Elamvazuthi I; Al-Nasheri A; Mesallam TA; Farahat M; Malki KH
    J Voice; 2017 May; 31(3):386.e1-386.e8. PubMed ID: 27745756
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Predicting Voice Disorder Status From Smoothed Measures of Cepstral Peak Prominence Using Praat and Analysis of Dysphonia in Speech and Voice (ADSV).
    Sauder C; Bretl M; Eadie T
    J Voice; 2017 Sep; 31(5):557-566. PubMed ID: 28169094
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Comparison of Cepstral Peak Prominence Measures From Two Acoustic Analysis Programs.
    Watts CR; Awan SN; Maryn Y
    J Voice; 2017 May; 31(3):387.e1-387.e10. PubMed ID: 27751661
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A computer system for acoustic analysis of pathological voices and laryngeal diseases screening.
    Hadjitodorov S; Mitev P
    Med Eng Phys; 2002 Jul; 24(6):419-29. PubMed ID: 12135650
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Voice source characterization using pitch synchronous discrete cosine transform for speaker identification.
    Ramakrishnan AG; Abhiram B; Prasanna SR
    J Acoust Soc Am; 2015 Jun; 137(6):EL469-75. PubMed ID: 26093457
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Improved estimation of frequency importance functions.
    Kates JM
    J Acoust Soc Am; 2013 Nov; 134(5):EL459-64. PubMed ID: 24181991
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Statistical properties of linear prediction analysis underlying the challenge of formant bandwidth estimation.
    Mehta DD; Wolfe PJ
    J Acoust Soc Am; 2015 Feb; 137(2):944-50. PubMed ID: 25698026
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Vowel space density as an indicator of speech performance.
    Story BH; Bunton K
    J Acoust Soc Am; 2017 May; 141(5):EL458. PubMed ID: 28599542
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Advanced voice function assessment: editorial introduction to this special issue.
    Barney A; Kob M
    Logoped Phoniatr Vocol; 2015 Apr; 40(1):1-4. PubMed ID: 25724282
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Acoustic correlates of vocal quality.
    Eskenazi L; Childers DG; Hicks DM
    J Speech Hear Res; 1990 Jun; 33(2):298-306. PubMed ID: 2359270
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Toward improved ecological validity in the acoustic measurement of overall voice quality: combining continuous speech and sustained vowels.
    Maryn Y; Corthals P; Van Cauwenberge P; Roy N; De Bodt M
    J Voice; 2010 Sep; 24(5):540-55. PubMed ID: 19883993
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Predictive value and discriminant capacity of cepstral- and spectral-based measures during continuous speech.
    Lowell SY; Colton RH; Kelley RT; Mizia SA
    J Voice; 2013 Jul; 27(4):393-400. PubMed ID: 23684735
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Automatic measurement of voice onset time using discriminative structured prediction.
    Sonderegger M; Keshet J
    J Acoust Soc Am; 2012 Dec; 132(6):3965-79. PubMed ID: 23231126
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.