These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

217 related articles for article (PubMed ID: 12237465)

  • 1. A simple model for polyproline II structure in unfolded states of alanine-based peptides.
    Pappu RV; Rose GD
    Protein Sci; 2002 Oct; 11(10):2437-55. PubMed ID: 12237465
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Determinants of the polyproline II helix from modeling studies.
    Creamer TP; Campbell MN
    Adv Protein Chem; 2002; 62():263-82. PubMed ID: 12418106
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Polyproline II helical structure in protein unfolded states: lysine peptides revisited.
    Rucker AL; Creamer TP
    Protein Sci; 2002 Apr; 11(4):980-5. PubMed ID: 11910041
    [TBL] [Abstract][Full Text] [Related]  

  • 4. pH-Independence of trialanine and the effects of termini blocking in short peptides: a combined vibrational, NMR, UVCD, and molecular dynamics study.
    Toal S; Meral D; Verbaro D; Urbanc B; Schweitzer-Stenner R
    J Phys Chem B; 2013 Apr; 117(14):3689-706. PubMed ID: 23448349
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role of solvent in determining conformational preferences of alanine dipeptide in water.
    Drozdov AN; Grossfield A; Pappu RV
    J Am Chem Soc; 2004 Mar; 126(8):2574-81. PubMed ID: 14982467
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Water interaction differences determine the relative energetic stability of the polyproline II conformation of the alanine dipeptide in aqueous environments.
    Mirkin NG; Krimm S
    Biopolymers; 2012 Oct; 97(10):789-94. PubMed ID: 22806498
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Conformational preferences of a short Aib/Ala-based water-soluble peptide as a function of temperature.
    Banerjee R; Chattopadhyay S; Basu G
    Proteins; 2009 Jul; 76(1):184-200. PubMed ID: 19137603
    [TBL] [Abstract][Full Text] [Related]  

  • 8. N-terminal diproline and charge group effects on the stabilization of helical conformation in alanine-based short peptides: CD studies with water and methanol as solvent.
    Goyal B; Srivastava KR; Durani S
    J Pept Sci; 2017 Jun; 23(6):431-437. PubMed ID: 28425159
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Left-handed polyproline-II helix revisited: proteins causing proteopathies.
    Adzhubei AA; Anashkina AA; Makarov AA
    J Biomol Struct Dyn; 2017 Sep; 35(12):2701-2713. PubMed ID: 27562438
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A survey of left-handed polyproline II helices.
    Stapley BJ; Creamer TP
    Protein Sci; 1999 Mar; 8(3):587-95. PubMed ID: 10091661
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural properties of hydration shell around various conformations of simple polypeptides.
    Czapiewski D; Zielkiewicz J
    J Phys Chem B; 2010 Apr; 114(13):4536-50. PubMed ID: 20232827
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Diproline templates as folding nuclei in designed peptides. Conformational analysis of synthetic peptide helices containing amino terminal Pro-Pro segments.
    Rai R; Aravinda S; Kanagarajadurai K; Raghothama S; Shamala N; Balaram P
    J Am Chem Soc; 2006 Jun; 128(24):7916-28. PubMed ID: 16771506
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Left-handed polyproline II helices commonly occur in globular proteins.
    Adzhubei AA; Sternberg MJ
    J Mol Biol; 1993 Jan; 229(2):472-93. PubMed ID: 8429558
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Polyproline II helix conformation in a proline-rich environment: a theoretical study.
    Vila JA; Baldoni HA; Ripoll DR; Ghosh A; Scheraga HA
    Biophys J; 2004 Feb; 86(2):731-42. PubMed ID: 14747311
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
    Foffi G; Pastore A; Piazza F; Temussi PA
    Phys Biol; 2013 Aug; 10(4):040301. PubMed ID: 23912807
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Helix-coil transition of alanine peptides in water: force field dependence on the folded and unfolded structures.
    Gnanakaran S; GarcĂ­a AE
    Proteins; 2005 Jun; 59(4):773-82. PubMed ID: 15815975
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Free energy determinants of secondary structure formation: I. alpha-Helices.
    Yang AS; Honig B
    J Mol Biol; 1995 Sep; 252(3):351-65. PubMed ID: 7563056
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Amino acid conformational preferences and solvation of polar backbone atoms in peptides and proteins.
    Avbelj F
    J Mol Biol; 2000 Jul; 300(5):1335-59. PubMed ID: 10903873
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stable conformations of tripeptides in aqueous solution studied by UV circular dichroism spectroscopy.
    Eker F; Griebenow K; Schweitzer-Stenner R
    J Am Chem Soc; 2003 Jul; 125(27):8178-85. PubMed ID: 12837087
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Host-guest study of left-handed polyproline II helix formation.
    Kelly MA; Chellgren BW; Rucker AL; Troutman JM; Fried MG; Miller AF; Creamer TP
    Biochemistry; 2001 Dec; 40(48):14376-83. PubMed ID: 11724549
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.