BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 12237466)

  • 41. Crystal structure of a pol alpha family DNA polymerase from the hyperthermophilic archaeon Thermococcus sp. 9 degrees N-7.
    Rodriguez AC; Park HW; Mao C; Beese LS
    J Mol Biol; 2000 Jun; 299(2):447-62. PubMed ID: 10860752
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Crystal structure of the ATPPase subunit and its substrate-dependent association with the GATase subunit: a novel regulatory mechanism for a two-subunit-type GMP synthetase from Pyrococcus horikoshii OT3.
    Maruoka S; Horita S; Lee WC; Nagata K; Tanokura M
    J Mol Biol; 2010 Jan; 395(2):417-29. PubMed ID: 19900465
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Gene and primary structures of dye-linked L-proline dehydrogenase from the hyperthermophilic archaeon Thermococcus profundus show the presence of a novel heterotetrameric amino acid dehydrogenase complex.
    Kawakami R; Sakuraba H; Ohshima T
    Extremophiles; 2004 Apr; 8(2):99-108. PubMed ID: 15064976
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Crystal structure of a hyperthermophilic archaeal acylphosphatase from Pyrococcus horikoshii--structural insights into enzymatic catalysis, thermostability, and dimerization.
    Cheung YY; Lam SY; Chu WK; Allen MD; Bycroft M; Wong KB
    Biochemistry; 2005 Mar; 44(12):4601-11. PubMed ID: 15779887
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Comparative analysis of the catalytic components in the archaeal dye-linked L-proline dehydrogenase complexes.
    Kawakami R; Noguchi C; Higashi M; Sakuraba H; Ohshima T
    Appl Microbiol Biotechnol; 2013 Apr; 97(8):3419-27. PubMed ID: 22752365
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Structure of a haloacid dehalogenase superfamily phosphatase PH1421 from Pyrococcus horikoshii OT3: oligomeric state and thermoadaptation mechanism.
    Yamamoto H; Takio K; Sugahara M; Kunishima N
    Acta Crystallogr D Biol Crystallogr; 2008 Oct; 64(Pt 10):1068-77. PubMed ID: 18931414
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Theoretical model of the three-dimensional structure of a sugar-binding protein from Pyrococcus horikoshii: structural analysis and sugar-binding simulations.
    Marabotti A; D'Auria S; Rossi M; Facchiano AM
    Biochem J; 2004 Jun; 380(Pt 3):677-84. PubMed ID: 15015939
    [TBL] [Abstract][Full Text] [Related]  

  • 48. The crystal structure of glucokinase from Leishmania braziliensis.
    Buechner GS; Millington ME; Perry K; D'Antonio EL
    Mol Biochem Parasitol; 2019 Jan; 227():47-52. PubMed ID: 30571993
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Structure of peroxiredoxin from the anaerobic hyperthermophilic archaeon Pyrococcus horikoshii.
    Nakamura T; Mori A; Niiyama M; Matsumura H; Tokuyama C; Morita J; Uegaki K; Inoue T
    Acta Crystallogr Sect F Struct Biol Cryst Commun; 2013 Jul; 69(Pt 7):719-22. PubMed ID: 23832195
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Structure based hyperthermostability of archaeal histone HPhA from Pyrococcus horikoshii.
    Li T; Sun F; Ji X; Feng Y; Rao Z
    J Mol Biol; 2003 Jan; 325(5):1031-7. PubMed ID: 12527306
    [TBL] [Abstract][Full Text] [Related]  

  • 51. T cell activation is driven by an ADP-dependent glucokinase linking enhanced glycolysis with mitochondrial reactive oxygen species generation.
    Kamiński MM; Sauer SW; Kamiński M; Opp S; Ruppert T; Grigaravičius P; Grudnik P; Gröne HJ; Krammer PH; Gülow K
    Cell Rep; 2012 Nov; 2(5):1300-15. PubMed ID: 23168256
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Structure of Pyrococcus horikoshii NikR: nickel sensing and implications for the regulation of DNA recognition.
    Chivers PT; Tahirov TH
    J Mol Biol; 2005 May; 348(3):597-607. PubMed ID: 15826657
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Evidence of recent lateral gene transfer among hyperthermophilic archaea.
    Diruggiero J; Dunn D; Maeder DL; Holley-Shanks R; Chatard J; Horlacher R; Robb FT; Boos W; Weiss RB
    Mol Microbiol; 2000 Nov; 38(4):684-93. PubMed ID: 11115105
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Overexpression, purification, crystallization and preliminary crystallographic studies of a hyperthermophilic adenylosuccinate synthetase from Pyrococcus horikoshii OT3.
    Wang X; Akasaka R; Takemoto C; Morita S; Yamaguchi M; Terada T; Shirozu M; Yokoyama S; Chen S; Si S; Xie Y
    Acta Crystallogr Sect F Struct Biol Cryst Commun; 2011 Dec; 67(Pt 12):1551-5. PubMed ID: 22139164
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Structure of SAICAR synthetase from Pyrococcus horikoshii OT3: insights into thermal stability.
    Manjunath K; Kanaujia SP; Kanagaraj S; Jeyakanthan J; Sekar K
    Int J Biol Macromol; 2013 Feb; 53():7-19. PubMed ID: 23137517
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Crystallization and preliminary X-ray analysis of a DNA primase from hyperthermophilic archaeon Pyrococcus horikoshii.
    Ito N; Nureki O; Shirouzu M; Yokoyama S; Hanaoka F
    J Biochem; 2001 Dec; 130(6):727-30. PubMed ID: 11726270
    [TBL] [Abstract][Full Text] [Related]  

  • 57. A fifth protein subunit Ph1496p elevates the optimum temperature for the ribonuclease P activity from Pyrococcus horikoshii OT3.
    Fukuhara H; Kifusa M; Watanabe M; Terada A; Honda T; Numata T; Kakuta Y; Kimura M
    Biochem Biophys Res Commun; 2006 May; 343(3):956-64. PubMed ID: 16574071
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Crystal structure of the ribonuclease P protein Ph1877p from hyperthermophilic archaeon Pyrococcus horikoshii OT3.
    Takagi H; Watanabe M; Kakuta Y; Kamachi R; Numata T; Tanaka I; Kimura M
    Biochem Biophys Res Commun; 2004 Jul; 319(3):787-94. PubMed ID: 15184052
    [TBL] [Abstract][Full Text] [Related]  

  • 59. The 1.5 A resolution crystal structure of the carbamate kinase-like carbamoyl phosphate synthetase from the hyperthermophilic Archaeon pyrococcus furiosus, bound to ADP, confirms that this thermostable enzyme is a carbamate kinase, and provides insight into substrate binding and stability in carbamate kinases.
    Ramón-Maiques S; Marina A; Uriarte M; Fita I; Rubio V
    J Mol Biol; 2000 Jun; 299(2):463-76. PubMed ID: 10860751
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Crystal structure of protein Ph1481p in complex with protein Ph1877p of archaeal RNase P from Pyrococcus horikoshii OT3: implication of dimer formation of the holoenzyme.
    Kawano S; Nakashima T; Kakuta Y; Tanaka I; Kimura M
    J Mol Biol; 2006 Mar; 357(2):583-91. PubMed ID: 16430919
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.