BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 12237527)

  • 1. Physical properties of phosphatidylcholine vesicles containing small amount of sodium cholate and consideration on the initial stage of vesicle solubilization.
    Sun C; Kashiwagi H; Ueno M
    Chem Pharm Bull (Tokyo); 2002 Sep; 50(9):1145-50. PubMed ID: 12237527
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Mechanism of micelle-vesicle transformation and control of vesicular sizes and properties].
    Kashiwagi H; Ueno M
    Yakugaku Zasshi; 2008 May; 128(5):669-80. PubMed ID: 18451612
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Process of destruction of large unilamellar vesicles by a zwitterionic detergent, CHAPS: partition behavior between membrane and water phases.
    Viriyaroj A; Kashiwagi H; Ueno M
    Chem Pharm Bull (Tokyo); 2005 Sep; 53(9):1140-6. PubMed ID: 16141584
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thermodynamics of interaction of octyl glucoside with phosphatidylcholine vesicles: partitioning and solubilization as studied by high sensitivity titration calorimetry.
    Keller M; Kerth A; Blume A
    Biochim Biophys Acta; 1997 Jun; 1326(2):178-92. PubMed ID: 9218549
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thermodynamics and dynamics of phosphatidylcholine-cholesterol mixed model membranes in the liquid crystalline state: effects of water.
    Shin YK; Budil DE; Freed JH
    Biophys J; 1993 Sep; 65(3):1283-94. PubMed ID: 8241408
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Kinetic and structural aspects of reconstitution of phosphatidylcholine vesicles by dilution of phosphatidylcholine-sodium cholate mixed micelles.
    Almog S; Kushnir T; Nir S; Lichtenberg D
    Biochemistry; 1986 May; 25(9):2597-605. PubMed ID: 3718967
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The vesicle-to-micelle transformation of phospholipid-cholate mixed aggregates: a state of the art analysis including membrane curvature effects.
    Elsayed MM; Cevc G
    Biochim Biophys Acta; 2011 Jan; 1808(1):140-53. PubMed ID: 20832388
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Solubilization of DMPC and DPPC vesicles by detergents below their critical micellization concentration: high-sensitivity differential scanning calorimetry, Fourier transform infrared spectroscopy and freeze-fracture electron microscopy reveal two interaction sites of detergents in vesicles.
    Bayerl TM; Werner GD; Sackmann E
    Biochim Biophys Acta; 1989 Sep; 984(2):214-24. PubMed ID: 2765550
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Calcium-dependent and calcium-independent interactions of prothrombin fragment 1 with phosphatidylglycerol/phosphatidylcholine unilamellar vesicles.
    Lentz BR; Alford DR; Jones ME; Dombrose FA
    Biochemistry; 1985 Nov; 24(24):6997-7005. PubMed ID: 3841009
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular motion and order in oriented lipid multibilayer membranes evaluated by simulations of spin label ESR spectra. Effects of temperature, cholesterol and magnetic field.
    Shimoyama Y; Eriksson LE; Ehrenberg A
    Biochim Biophys Acta; 1978 Apr; 508(2):213-35. PubMed ID: 205243
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Permeabilizing action of filipin III on model membranes through a filipin-phospholipid binding.
    Milhaud J
    Biochim Biophys Acta; 1992 Apr; 1105(2):307-18. PubMed ID: 1375101
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Determination of partition coefficient of spin probe between different lipid membrane phases.
    Arsov Z; Strancar J
    J Chem Inf Model; 2005; 45(6):1662-71. PubMed ID: 16309270
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Kinetic studies of the interaction of fatty acids with phosphatidylcholine vesicles (liposomes).
    Rogerson ML; Robinson BH; Bucak S; Walde P
    Colloids Surf B Biointerfaces; 2006 Mar; 48(1):24-34. PubMed ID: 16466910
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An electron spin resonance study of interactions between gramicidin A' and phosphatidylcholine bilayers.
    Ge M; Freed JH
    Biophys J; 1993 Nov; 65(5):2106-23. PubMed ID: 7507719
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electron spin resonance studies of phosphatidylcholine interacted with cholesterol and with a hopanoid in liposomal membrane.
    Nagimo A; Sato Y; Suzuki Y
    Chem Pharm Bull (Tokyo); 1991 Nov; 39(11):3071-4. PubMed ID: 1666027
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Stages of the bilayer-micelle transition in the system phosphatidylcholine-C12E8 as studied by deuterium- and phosphorous-NMR, light scattering, and calorimetry.
    Otten D; Löbbecke L; Beyer K
    Biophys J; 1995 Feb; 68(2):584-97. PubMed ID: 7696511
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Solubilization of negatively charged DPPC/DPPG liposomes by bile salts.
    Hildebrand A; Beyer K; Neubert R; Garidel P; Blume A
    J Colloid Interface Sci; 2004 Nov; 279(2):559-71. PubMed ID: 15464825
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interaction of cholesterol with sphingomyelin in mixed membranes containing phosphatidylcholine, studied by spin-label ESR and IR spectroscopies. A possible stabilization of gel-phase sphingolipid domains by cholesterol.
    Veiga MP; Arrondo JL; Goñi FM; Alonso A; Marsh D
    Biochemistry; 2001 Feb; 40(8):2614-22. PubMed ID: 11327885
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of bacteriohopane-32-ol on the stability of various kinds of liposomal membranes.
    Chen Z; Tanno N; Takenaka S; Suzuki Y
    Biol Pharm Bull; 1995 Apr; 18(4):600-4. PubMed ID: 7655435
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Vesicle fission of giant unilamellar vesicles of liquid-ordered-phase membranes induced by amphiphiles with a single long hydrocarbon chain.
    Inaoka Y; Yamazaki M
    Langmuir; 2007 Jan; 23(2):720-8. PubMed ID: 17209626
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.