These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

373 related articles for article (PubMed ID: 12239561)

  • 1. Allowed and forbidden transitions in artificial hydrogen and helium atoms.
    Fujisawa T; Austing DG; Tokura Y; Hirayama Y; Tarucha S
    Nature; 2002 Sep; 419(6904):278-81. PubMed ID: 12239561
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optical emission from a charge-tunable quantum ring.
    Warburton RJ; Schaflein C; Haft D; Bickel F; Lorke A; Karrai K; Garcia JM; Schoenfeld W; Petroff PM
    Nature; 2000 Jun; 405(6789):926-9. PubMed ID: 10879528
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hidden symmetries in the energy levels of excitonic 'artificial atoms'.
    Bayer M; Stern O; Hawrylak P; Fafard S; Forchel A
    Nature; 2000 Jun; 405(6789):923-6. PubMed ID: 10879527
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hybridization of electronic states in quantum dots through photon emission.
    Karrai K; Warburton RJ; Schulhauser C; Högele A; Urbaszek B; McGhee EJ; Govorov AO; Garcia JM; Gerardot BD; Petroff PM
    Nature; 2004 Jan; 427(6970):135-8. PubMed ID: 14712271
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Coupling of spin and orbital motion of electrons in carbon nanotubes.
    Kuemmeth F; Ilani S; Ralph DC; McEuen PL
    Nature; 2008 Mar; 452(7186):448-52. PubMed ID: 18368113
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Exciton fine structure and spin relaxation in semiconductor colloidal quantum dots.
    Kim J; Wong CY; Scholes GD
    Acc Chem Res; 2009 Aug; 42(8):1037-46. PubMed ID: 19425542
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Orbital occupation in electron-charged CdSe quantum-dot solids.
    Houtepen AJ; Vanmaekelbergh D
    J Phys Chem B; 2005 Oct; 109(42):19634-42. PubMed ID: 16853539
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electron-conducting quantum dot solids: novel materials based on colloidal semiconductor nanocrystals.
    Vanmaekelbergh D; Liljeroth P
    Chem Soc Rev; 2005 Apr; 34(4):299-312. PubMed ID: 15778764
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Long-range transport in an assembly of ZnO quantum dots: the effects of quantum confinement, Coulomb repulsion and structural disorder.
    Roest AL; Germeau A; Kelly JJ; Vanmaekelbergh D; Allan G; Meulenkamp EA
    Chemphyschem; 2003 Sep; 4(9):959-66. PubMed ID: 14562441
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Excited-state relaxation in PbSe quantum dots.
    An JM; Califano M; Franceschetti A; Zunger A
    J Chem Phys; 2008 Apr; 128(16):164720. PubMed ID: 18447492
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spin-forbidden and spin-enabled 4f(14)-->4f(13)5d(1) transitions of Yb(2+)-doped CsCaBr3.
    Sánchez-Sanz G; Seijo L; Barandiarán Z
    J Chem Phys; 2009 Jul; 131(2):024505. PubMed ID: 19604002
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optically programmable electron spin memory using semiconductor quantum dots.
    Kroutvar M; Ducommun Y; Heiss D; Bichler M; Schuh D; Abstreiter G; Finley JJ
    Nature; 2004 Nov; 432(7013):81-4. PubMed ID: 15525984
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Coherent optical spectroscopy of a strongly driven quantum dot.
    Xu X; Sun B; Berman PR; Steel DG; Bracker AS; Gammon D; Sham LJ
    Science; 2007 Aug; 317(5840):929-32. PubMed ID: 17702938
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The principle-quantum-number (and the radial-quantum-number) expansion of the correlation energy of two-electron atoms.
    Kutzelnigg W
    Phys Chem Chem Phys; 2008 Jun; 10(23):3460-8. PubMed ID: 18535730
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Kondo effect in an integer-spin quantum dot.
    Sasaki S; De Franceschi S ; Elzerman JM; van der Wiel WG ; Eto M; Tarucha S; Kouwenhoven LP
    Nature; 2000 Jun; 405(6788):764-7. PubMed ID: 10866190
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Two-phonon processes of intraband relaxation in the terahertz regime in quantum dots.
    Wang ZW; Li SS
    J Phys Condens Matter; 2011 Jun; 23(22):225303. PubMed ID: 21593554
    [TBL] [Abstract][Full Text] [Related]  

  • 17. pH-sensitive ligand for luminescent quantum dots.
    Tomasulo M; Yildiz I; Kaanumalle SL; Raymo FM
    Langmuir; 2006 Nov; 22(24):10284-90. PubMed ID: 17107034
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Resonant Raman transitions into singlet and triplet states in InGaAs quantum dots containing two electrons.
    Köppen T; Franz D; Schramm A; Heyn Ch; Heitmann D; Kipp T
    Phys Rev Lett; 2009 Jul; 103(3):037402. PubMed ID: 19659315
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electronic structure of linear thiophenolate-bridged heteronuclear complexes [LFeMFeL](n)(+) (M = Cr, Co, Fe; n = 1-3): a combination of kinetic exchange interaction and electron delocalization.
    Chibotaru LF; Girerd JJ; Blondin G; Glaser T; Wieghardt K
    J Am Chem Soc; 2003 Oct; 125(41):12615-30. PubMed ID: 14531706
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Luminescent chemosensors based on semiconductor quantum dots.
    Raymo FM; Yildiz I
    Phys Chem Chem Phys; 2007 May; 9(17):2036-43. PubMed ID: 17464385
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.