These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

94 related articles for article (PubMed ID: 12240030)

  • 1. Electro-oxidation of methanol on platinum-organic metal complex mixed catalysts in acidic media.
    Okada T; Suzuki Y; Hirose T; Toda T; Ozawa T
    Chem Commun (Camb); 2001 Dec; (23):2492-3. PubMed ID: 12240030
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Facile Fabrication of Platinum-Cobalt Alloy Nanoparticles with Enhanced Electrocatalytic Activity for a Methanol Oxidation Reaction.
    Huang H; Hu X; Zhang J; Su N; Cheng J
    Sci Rep; 2017 Mar; 7():45555. PubMed ID: 28358143
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Vanadium oxide decorated carbon nanotubes as a promising support of Pt nanoparticles for methanol electro-oxidation reaction.
    Nouralishahi A; Khodadadi AA; Rashidi AM; Mortazavi Y
    J Colloid Interface Sci; 2013 Mar; 393():291-9. PubMed ID: 23201063
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A high-performance platinum electrocatalyst loaded on a graphene hydrogel for high-rate methanol oxidation.
    Wang X; Li C; Shi G
    Phys Chem Chem Phys; 2014 Jun; 16(21):10142-8. PubMed ID: 24553960
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Platinum and palladium nano-structured catalysts for polymer electrolyte fuel cells and direct methanol fuel cells.
    Long NV; Thi CM; Yong Y; Nogami M; Ohtaki M
    J Nanosci Nanotechnol; 2013 Jul; 13(7):4799-824. PubMed ID: 23901503
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nanoparticle size effects on methanol electrochemical oxidation on carbon supported platinum catalysts.
    Bergamaski K; Pinheiro AL; Teixeira-Neto E; Nart FC
    J Phys Chem B; 2006 Oct; 110(39):19271-9. PubMed ID: 17004779
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High Methanol Electro-Oxidation Using PtCo/Reduced Graphene Oxide (rGO) Anode Nanocatalysts in Direct Methanol Fuel Cell.
    Baronia R; Goel J; Singhal SK
    J Nanosci Nanotechnol; 2019 Jul; 19(7):4315-4322. PubMed ID: 30765012
    [TBL] [Abstract][Full Text] [Related]  

  • 8. PtRu catalysts supported on heteropolyacid and chitosan functionalized carbon nanotubes for methanol oxidation reaction of fuel cells.
    Cui Z; Li CM; Jiang SP
    Phys Chem Chem Phys; 2011 Sep; 13(36):16349-57. PubMed ID: 21842101
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synthesis and Characterization of Nitrogen Doped Reduced Graphene Oxide (N-rGO) Supported PtCu Anode Catalysts for Direct Methanol Fuel Cell.
    Baronia R; Goel J; Gautam G; Singh D; Singhal SK
    J Nanosci Nanotechnol; 2019 Jul; 19(7):3832-3843. PubMed ID: 30764941
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nitrogen-doped carbon-graphene composites enhance the electrocatalytic performance of the supported Pt catalysts for methanol oxidation.
    Zhu J; Xiao M; Zhao X; Li K; Liu C; Xing W
    Chem Commun (Camb); 2014 Oct; 50(81):12201-3. PubMed ID: 25178097
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bimetallic Pt-Au nanocatalysts electrochemically deposited on graphene and their electrocatalytic characteristics towards oxygen reduction and methanol oxidation.
    Hu Y; Zhang H; Wu P; Zhang H; Zhou B; Cai C
    Phys Chem Chem Phys; 2011 Mar; 13(9):4083-94. PubMed ID: 21229152
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Palladium-Cobalt Nanowires Decorated with Jagged Appearance for Efficient Methanol Electro-oxidation.
    Wang C; Zheng L; Chang R; Du L; Zhu C; Geng D; Yang D
    ACS Appl Mater Interfaces; 2018 Sep; 10(35):29965-29971. PubMed ID: 30084629
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pt based nanocomposites (mono/bi/tri-metallic) decorated using different carbon supports for methanol electro-oxidation in acidic and basic media.
    Singh B; Murad L; Laffir F; Dickinson C; Dempsey E
    Nanoscale; 2011 Aug; 3(8):3334-49. PubMed ID: 21717025
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Activity of platinum/carbon and palladium/carbon catalysts promoted by Ni2 P in direct ethanol fuel cells.
    Li G; Feng L; Chang J; Wickman B; Grönbeck H; Liu C; Xing W
    ChemSusChem; 2014 Dec; 7(12):3374-81. PubMed ID: 25338505
    [TBL] [Abstract][Full Text] [Related]  

  • 15. CeO2/rGO/Pt sandwich nanostructure: rGO-enhanced electron transmission between metal oxide and metal nanoparticles for anodic methanol oxidation of direct methanol fuel cells.
    Yu X; Kuai L; Geng B
    Nanoscale; 2012 Sep; 4(18):5738-43. PubMed ID: 22893017
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nanoscale Perovskites as Catalysts and Supports for Direct Methanol Fuel Cells.
    Li L; Tan S; Salvatore KL; Wong SS
    Chemistry; 2019 Jun; 25(33):7779-7797. PubMed ID: 30985033
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Methanol electro-oxidation on platinum modified tungsten carbides in direct methanol fuel cells: a DFT study.
    Sheng T; Lin X; Chen ZY; Hu P; Sun SG; Chu YQ; Ma CA; Lin WF
    Phys Chem Chem Phys; 2015 Oct; 17(38):25235-43. PubMed ID: 26351805
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhancement in electro-oxidation of methanol over PtRu black catalyst through strong interaction with iron oxide nanocluster.
    Jeon MK; Lee KR; Woo SI
    Langmuir; 2010 Nov; 26(21):16529-33. PubMed ID: 20504037
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biobutanol as Fuel for Direct Alcohol Fuel Cells-Investigation of Sn-Modified Pt Catalyst for Butanol Electro-oxidation.
    Puthiyapura VK; Brett DJ; Russell AE; Lin WF; Hardacre C
    ACS Appl Mater Interfaces; 2016 May; 8(20):12859-70. PubMed ID: 27140480
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ni2P Makes Application of the PtRu Catalyst Much Stronger in Direct Methanol Fuel Cells.
    Chang J; Feng L; Liu C; Xing W
    ChemSusChem; 2015 Oct; 8(19):3340-7. PubMed ID: 26448528
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.