These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

92 related articles for article (PubMed ID: 12240350)

  • 1. Artificial molecular-level machines. Dethreading-rethreading of a pseudorotaxane powered exclusively by light energy.
    Balzani V; Credi A; Marchioni F; Stoddart JF
    Chem Commun (Camb); 2001 Sep; (18):1860-1. PubMed ID: 12240350
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A pseudorotaxane on gold: formation of self-assembled monolayers, reversible dethreading and rethreading of the ring, and ion-gating behavior.
    Kim K; Jeon WS; Kang JK; Lee JW; Jon SY; Kim T; Kim K
    Angew Chem Int Ed Engl; 2003 May; 42(20):2293-6. PubMed ID: 12772166
    [No Abstract]   [Full Text] [Related]  

  • 3. Dethreading of a Photoactive Azobenzene-Containing Molecular Axle from a Crown Ether Ring: A Computational Investigation.
    Tabacchi G; Silvi S; Venturi M; Credi A; Fois E
    Chemphyschem; 2016 Jun; 17(12):1913-9. PubMed ID: 26918775
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Autonomous Non-Equilibrium Self-Assembly and Molecular Movements Powered by Electrical Energy.
    Ragazzon G; Malferrari M; Arduini A; Secchi A; Rapino S; Silvi S; Credi A
    Angew Chem Int Ed Engl; 2023 Jan; 62(5):e202214265. PubMed ID: 36422473
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Organic nanofibers embedding stimuli-responsive threaded molecular components.
    Fasano V; Baroncini M; Moffa M; Iandolo D; Camposeo A; Credi A; Pisignano D
    J Am Chem Soc; 2014 Oct; 136(40):14245-54. PubMed ID: 25264943
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Self-assembly of [2]pseudorotaxanes based on pillar[5]arene and bis(imidazolium) cations.
    Li C; Zhao L; Li J; Ding X; Chen S; Zhang Q; Yu Y; Jia X
    Chem Commun (Camb); 2010 Dec; 46(47):9016-8. PubMed ID: 21057678
    [TBL] [Abstract][Full Text] [Related]  

  • 7. From E to Z and back again: reversible photoisomerisation of an isolated charge-tagged azobenzene.
    Bull JN; Scholz MS; Carrascosa E; Bieske EJ
    Phys Chem Chem Phys; 2017 Dec; 20(1):509-513. PubMed ID: 29214264
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reversible photoswitching of rotaxane character and interplay of thermodynamic stability and kinetic lability in a self-assembling ring-axle molecular system.
    Baroncini M; Silvi S; Venturi M; Credi A
    Chemistry; 2010 Oct; 16(38):11580-7. PubMed ID: 20842670
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Light control of stoichiometry and motion in pseudorotaxanes comprising a cucurbit[7]uril wheel and an azobenzene-bipyridinium axle.
    Baroncini M; Gao C; Carboni V; Credi A; Previtera E; Semeraro M; Venturi M; Silvi S
    Chemistry; 2014 Aug; 20(34):10737-44. PubMed ID: 24931834
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Triptycene-derived oxacalixarenes as new wheels for the synthesis of [2]rotaxanes: acid-base- and metal-ion-switchable complexation processes.
    Hu SZ; Chen CF
    Chemistry; 2011 May; 17(19):5424-31. PubMed ID: 21465589
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Photocontrolled reversible room temperature phosphorescence (RTP) encoding β-cyclodextrin pseudorotaxane.
    Ma X; Cao J; Wang Q; Tian H
    Chem Commun (Camb); 2011 Mar; 47(12):3559-61. PubMed ID: 21321705
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Controlling molecular assembling by photons: reversible light-powered monomer-aggregate interconversion of porphyrins.
    Callari FL; Sortino S
    Chem Commun (Camb); 2008 Dec; (46):6179-81. PubMed ID: 19082112
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A light-driven three-dimensional plasmonic nanosystem that translates molecular motion into reversible chiroptical function.
    Kuzyk A; Yang Y; Duan X; Stoll S; Govorov AO; Sugiyama H; Endo M; Liu N
    Nat Commun; 2016 Feb; 7():10591. PubMed ID: 26830310
    [TBL] [Abstract][Full Text] [Related]  

  • 14. pH-Triggered dethreading-rethreading and switching of cucurbit[6]uril on bistable [3]pseudorotaxanes and [3]rotaxanes.
    Tuncel D; Katterle M
    Chemistry; 2008; 14(13):4110-6. PubMed ID: 18348131
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Controlling multivalent interactions in triply-threaded two-component superbundles.
    Balzani V; Clemente-León M; Credi A; Lowe JN; Badjić JD; Stoddart JF; Williams DJ
    Chemistry; 2003 Nov; 9(21):5348-60. PubMed ID: 14613145
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Acid/base controllable molecular switch based on a neutral phenanthroline guest penetrated pseudorotaxane.
    Muraoka M; Irie H; Nakatsuji Y
    Org Biomol Chem; 2010 May; 8(10):2408-13. PubMed ID: 20448899
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Photoisomerisation of azobenzene crystals in aqueous dispersions examined by higher order derivative spectra.
    Ichimura K
    Phys Chem Chem Phys; 2015 Jan; 17(4):2722-33. PubMed ID: 25502725
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Precise Rate Control of Pseudorotaxane Dethreading by pH-Responsive Selectively Functionalized Cyclodextrins.
    Cherraben S; Scelle J; Hasenknopf B; Vives G; Sollogoub M
    Org Lett; 2021 Oct; 23(20):7938-7942. PubMed ID: 34582212
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Light-driven DNA nanomachine with a photoresponsive molecular engine.
    Kamiya Y; Asanuma H
    Acc Chem Res; 2014 Jun; 47(6):1663-72. PubMed ID: 24617966
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Viologen-calix[6]arene pseudorotaxanes. Ion-pair recognition and threading/dethreading molecular motions.
    Credi A; Dumas S; Silvi S; Venturi M; Arduini A; Pochini A; Secchi A
    J Org Chem; 2004 Sep; 69(18):5881-7. PubMed ID: 15373473
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.