These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 12240405)

  • 41. A novel fluorescent vesicular sensor for saccharides based on boronic acid-diol interaction.
    Zhang Y; He Z; Li G
    Talanta; 2010 Apr; 81(1-2):591-6. PubMed ID: 20188967
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Enhanced carbohydrate structural selectivity in ion mobility-mass spectrometry analyses by boronic acid derivatization.
    Fenn LS; McLean JA
    Chem Commun (Camb); 2008 Nov; (43):5505-7. PubMed ID: 18997933
    [TBL] [Abstract][Full Text] [Related]  

  • 43. New dyes based on anthraquinone derivatives for color filter colorants.
    Park S; Park J; Lee S; Park J
    J Nanosci Nanotechnol; 2014 Aug; 14(8):6435-7. PubMed ID: 25936132
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Interaction of anthraquinone dyes with lysozyme: evidences from spectroscopic and docking studies.
    Paramaguru G; Kathiravan A; Selvaraj S; Venuvanalingam P; Renganathan R
    J Hazard Mater; 2010 Mar; 175(1-3):985-91. PubMed ID: 19939563
    [TBL] [Abstract][Full Text] [Related]  

  • 45. The fluorescence sensor for saccharide based on internal conversion.
    Sun XY; Liu B
    Luminescence; 2005; 20(4-5):331-3. PubMed ID: 16134221
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Calcium(II)-mediated doubling of alizarin adsorption in vitro.
    Myers HM
    Arch Oral Biol; 1981; 26(6):537-9. PubMed ID: 6947756
    [No Abstract]   [Full Text] [Related]  

  • 47. Regulating the fluorescence intensity of an anthracene boronic acid system: a B-N bond or a hydrolysis mechanism?
    Ni W; Kaur G; Springsteen G; Wang B; Franzen S
    Bioorg Chem; 2004 Dec; 32(6):571-81. PubMed ID: 15530997
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Carbohydrate-interactive pDNA and siRNA gene vectors based on boronic acid functionalized poly(amido amine)s.
    Piest M; Ankoné M; Engbersen JF
    J Control Release; 2013 Aug; 169(3):266-75. PubMed ID: 23428840
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Iron alizarin blue S stain for nuclei.
    Meloan SN; Puchtler H
    Stain Technol; 1974 Sep; 49(5):301-4. PubMed ID: 4142126
    [No Abstract]   [Full Text] [Related]  

  • 50. Rapid bioremediation of Alizarin Red S and Quinizarine Green SS dyes using Trichoderma lixii F21 mediated by biosorption and enzymatic processes.
    Adnan LA; Sathishkumar P; Yusoff AR; Hadibarata T; Ameen F
    Bioprocess Biosyst Eng; 2017 Jan; 40(1):85-97. PubMed ID: 27663440
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Carbohydrate-modulated DNA photocleavage: design, synthesis, and evaluation of novel glycosyl anthraquinones.
    Toshima K; Maeda Y; Ouchi H; Asai A; Matsumura S
    Bioorg Med Chem Lett; 2000 Oct; 10(19):2163-5. PubMed ID: 11012020
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Human serum albumin stability and toxicity of anthraquinone dye alizarin complexone: an albumin-dye model.
    Ding F; Zhang L; Diao JX; Li XN; Ma L; Sun Y
    Ecotoxicol Environ Saf; 2012 May; 79():238-246. PubMed ID: 22296882
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Enhanced fluorescence and chiral discrimination for tartaric acid in a dual fluorophore boronic acid receptor.
    Zhao J; James TD
    Chem Commun (Camb); 2005 Apr; (14):1889-91. PubMed ID: 15795777
    [TBL] [Abstract][Full Text] [Related]  

  • 54. The progress of selective fluorescent chemosensors by boronic acid.
    Huang S; Jia M; Xie Y; Wang J; Xu W; Fang H
    Curr Med Chem; 2012; 19(16):2621-37. PubMed ID: 22506769
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Mechanisms of Alizarin Red S and Methylene blue biosorption onto olive stone by-product: Isotherm study in single and binary systems.
    Albadarin AB; Mangwandi C
    J Environ Manage; 2015 Dec; 164():86-93. PubMed ID: 26355260
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Uptake and distribution of ultrasmall anatase TiO2 Alizarin red S nanoconjugates in Arabidopsis thaliana.
    Kurepa J; Paunesku T; Vogt S; Arora H; Rabatic BM; Lu J; Wanzer MB; Woloschak GE; Smalle JA
    Nano Lett; 2010 Jul; 10(7):2296-302. PubMed ID: 20218662
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Purification and characterization of a fungal laccase from the ascomycete Thielavia sp. and its role in the decolorization of a recalcitrant dye.
    Mtibaà R; Barriuso J; de Eugenio L; Aranda E; Belbahri L; Nasri M; Martínez MJ; Mechichi T
    Int J Biol Macromol; 2018 Dec; 120(Pt B):1744-1751. PubMed ID: 30268749
    [TBL] [Abstract][Full Text] [Related]  

  • 58. A water-soluble fluorescent fluoride ion probe based on Alizarin Red S-Al(III) complex.
    Sai Sathish R; Ravi Kumar M; Nageswara Rao G; Anil Kumar K; Janardhana C
    Spectrochim Acta A Mol Biomol Spectrosc; 2007 Feb; 66(2):457-61. PubMed ID: 16859979
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Modification of bone-like apatite nanoparticle size and growth kinetics by alizarin red S.
    Ibsen CJ; Birkedal H
    Nanoscale; 2010 Nov; 2(11):2478-86. PubMed ID: 20931127
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Alizarin red S/copper ion-based ensemble for fluorescence turn on detection of glutathione with tunable dynamic range.
    Chen Z; Wang Z; Chen J; Chen X
    Biosens Bioelectron; 2012; 38(1):202-8. PubMed ID: 22732668
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.