BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

417 related articles for article (PubMed ID: 12240523)

  • 1. Odontoblast phosphate and calcium transport in dentinogenesis.
    Lundquist P
    Swed Dent J Suppl; 2002; (154):1-52. PubMed ID: 12240523
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phosphate and calcium uptake by rat odontoblast-like MRPC-1 cells concomitant with mineralization.
    Lundquist P; Ritchie HH; Moore K; Lundgren T; Linde A
    J Bone Miner Res; 2002 Oct; 17(10):1801-13. PubMed ID: 12369784
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Calcium transport in dentinogenesis. An experimental study in the rat incisor odontoblast.
    Lundgren T
    Swed Dent J Suppl; 1992; 82():1-91. PubMed ID: 1329245
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Role of rat sodium/phosphate cotransporters in the cell membrane transport of arsenate.
    Villa-Bellosta R; Sorribas V
    Toxicol Appl Pharmacol; 2008 Oct; 232(1):125-34. PubMed ID: 18586044
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Regulation of the NPT gene by a naturally occurring antisense transcript.
    Werner A; Preston-Fayers K; Dehmelt L; Nalbant P
    Cell Biochem Biophys; 2002; 36(2-3):241-52. PubMed ID: 12139410
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Na+ -phosphate cotransport in mouse distal convoluted tubule cells: evidence for Glvr-1 and Ram-1 gene expression.
    Tenenhouse HS; Gauthier C; Martel J; Gesek FA; Coutermarsh BA; Friedman PA
    J Bone Miner Res; 1998 Apr; 13(4):590-7. PubMed ID: 9556059
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inorganic phosphate regulates Glvr-1 and -2 expression: role of calcium and ERK1/2.
    Wittrant Y; Bourgine A; Khoshniat S; Alliot-Licht B; Masson M; Gatius M; Rouillon T; Weiss P; Beck L; Guicheux J
    Biochem Biophys Res Commun; 2009 Apr; 381(2):259-63. PubMed ID: 19232318
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Type II Na+-Pi cotransporters in osteoblast mineral formation: regulation by inorganic phosphate.
    Lundquist P; Murer H; Biber J
    Cell Physiol Biochem; 2007; 19(1-4):43-56. PubMed ID: 17310099
    [TBL] [Abstract][Full Text] [Related]  

  • 9. From serum to the mineral phase. The role of the odontoblast in calcium transport and mineral formation.
    Linde A; Lundgren T
    Int J Dev Biol; 1995 Feb; 39(1):213-22. PubMed ID: 7626409
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Substrate interactions in the human type IIa sodium-phosphate cotransporter (NaPi-IIa).
    Virkki LV; Forster IC; Biber J; Murer H
    Am J Physiol Renal Physiol; 2005 May; 288(5):F969-81. PubMed ID: 15613617
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Regulation of intestinal NaPi-IIb cotransporter gene expression by estrogen.
    Xu H; Uno JK; Inouye M; Xu L; Drees JB; Collins JF; Ghishan FK
    Am J Physiol Gastrointest Liver Physiol; 2003 Dec; 285(6):G1317-24. PubMed ID: 12893629
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inhibitory effect of JTP-59557, a new triazole derivative, on intestinal phosphate transport in vitro and in vivo.
    Matsuo A; Negoro T; Seo T; Kitao Y; Shindo M; Segawa H; Miyamoto K
    Eur J Pharmacol; 2005 Jul; 517(1-2):111-9. PubMed ID: 15961073
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Overexpression of regucalcin enhances its nuclear localization and suppresses L-type Ca2+ channel and calcium-sensing receptor mRNA expressions in cloned normal rat kidney proximal tubular epithelial NRK52E cells.
    Nakagawa T; Yamaguchi M
    J Cell Biochem; 2006 Nov; 99(4):1064-77. PubMed ID: 16767692
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ca2+ extrusion via Na+-Ca2+ exchangers in rat odontoblasts.
    Tsumura M; Okumura R; Tatsuyama S; Ichikawa H; Muramatsu T; Matsuda T; Baba A; Suzuki K; Kajiya H; Sahara Y; Tokuda M; Momose Y; Tazaki M; Shimono M; Shibukawa Y
    J Endod; 2010 Apr; 36(4):668-74. PubMed ID: 20307742
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nicotinamide prevents the development of hyperphosphataemia by suppressing intestinal sodium-dependent phosphate transporter in rats with adenine-induced renal failure.
    Eto N; Miyata Y; Ohno H; Yamashita T
    Nephrol Dial Transplant; 2005 Jul; 20(7):1378-84. PubMed ID: 15870221
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of ischemia-reperfusion on the renal brush-border membrane sodium-dependent phosphate cotransporter NaPi-2.
    Xiao Y; Desrosiers RR; Beliveau R
    Can J Physiol Pharmacol; 2001 Mar; 79(3):206-12. PubMed ID: 11294596
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Voltage-dependent phosphate transport in osteoblast-like cells.
    Luong KV; Green J; Kleeman CR; Yamaguchi DT
    J Bone Miner Res; 1991 Nov; 6(11):1161-5. PubMed ID: 1805540
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Regulation of intestinal phosphate transport. II. Metabolic acidosis stimulates Na(+)-dependent phosphate absorption and expression of the Na(+)-P(i) cotransporter NaPi-IIb in small intestine.
    Stauber A; Radanovic T; Stange G; Murer H; Wagner CA; Biber J
    Am J Physiol Gastrointest Liver Physiol; 2005 Mar; 288(3):G501-6. PubMed ID: 15701624
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regulation of intestinal phosphate transport. I. Segmental expression and adaptation to low-P(i) diet of the type IIb Na(+)-P(i) cotransporter in mouse small intestine.
    Radanovic T; Wagner CA; Murer H; Biber J
    Am J Physiol Gastrointest Liver Physiol; 2005 Mar; 288(3):G496-500. PubMed ID: 15701623
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Involvement of the MAPK-kinase pathway in the PTH-mediated regulation of the proximal tubule type IIa Na+/Pi cotransporter in mouse kidney.
    Bacic D; Schulz N; Biber J; Kaissling B; Murer H; Wagner CA
    Pflugers Arch; 2003 Apr; 446(1):52-60. PubMed ID: 12690463
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.