These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 12241047)

  • 1. Theoretical approach to description of time-dependent nitric oxide effects in the vasculature.
    Seraya IP; Nartsissov YR
    Mol Biol Rep; 2002; 29(1-2):151-5. PubMed ID: 12241047
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Mathematical modeling of non-stationary spatial gradients of nitric oxide in the muscle wall of blood vessels].
    Seraia IP; Nartsissov IaR; Brown G
    Biofizika; 2003; 48(1):91-6. PubMed ID: 12630121
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Diffusion of nitric oxide and scavenging by blood in the vasculature.
    Butler AR; Megson IL; Wright PG
    Biochim Biophys Acta; 1998 Sep; 1425(1):168-76. PubMed ID: 9813307
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Mathematical models of nitric oxide transport in a blood vessel].
    Regirer SA; Shadrina NKh
    Biofizika; 2005; 50(3):515-36. PubMed ID: 15977844
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Estimation of nitric oxide production and reaction rates in tissue by use of a mathematical model.
    Vaughn MW; Kuo L; Liao JC
    Am J Physiol; 1998 Jun; 274(6):H2163-76. PubMed ID: 9841542
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analysis of nitric oxide consumption by erythrocytes in blood vessels using a distributed multicellular model.
    El-Farra NH; Christofides PD; Liao JC
    Ann Biomed Eng; 2003 Mar; 31(3):294-309. PubMed ID: 12680727
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Role of nitric oxide and nitric oxide-independent relaxing factor in contraction and relaxation of rabbit blood vessels.
    Fujimoto S; Itoh T
    Eur J Pharmacol; 1997 Jul; 330(2-3):177-84. PubMed ID: 9253951
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of increased availability of endothelium-derived nitric oxide precursor on endothelium-dependent vascular relaxation in normal subjects and in patients with essential hypertension.
    Panza JA; Casino PR; Badar DM; Quyyumi AA
    Circulation; 1993 May; 87(5):1475-81. PubMed ID: 8491002
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Free nitric oxide diffusion in the bronchial microcirculation.
    Condorelli P; George SC
    Am J Physiol Heart Circ Physiol; 2002 Dec; 283(6):H2660-70. PubMed ID: 12388292
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Nitric oxide and homeostasis of the smooth vascular muscle].
    Schini VB; Vanhoutte PM
    Arch Mal Coeur Vaiss; 1993 Jan; 86 Spec No 1():83-9. PubMed ID: 7692833
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Vascular protective actions of a nitric oxide aspirin analog in both in vitro and in vivo models of diabetes mellitus.
    Pieper GM; Siebeneich W; Olds CL; Felix CC; Del Soldato P
    Free Radic Biol Med; 2002 Jun; 32(11):1143-56. PubMed ID: 12031899
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Vascular smooth muscle and nitric oxide.
    Zehetgruber M; Conforto A; Bing RJ
    Life Sci; 1993; 52(17):1397-406. PubMed ID: 8464341
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Endothelium-derived nitric oxide and cyclooxygenase products modulate corpus cavernosum smooth muscle tone.
    Azadzoi KM; Kim N; Brown ML; Goldstein I; Cohen RA; Saenz de Tejada I
    J Urol; 1992 Jan; 147(1):220-5. PubMed ID: 1370329
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Contribution of nNOS- and eNOS-derived NO to microvascular smooth muscle NO exposure.
    Kavdia M; Popel AS
    J Appl Physiol (1985); 2004 Jul; 97(1):293-301. PubMed ID: 15033959
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nitric oxide, an iceberg in cardiovascular physiology: far beyond vessel tone control.
    Rubio AR; Morales-Segura MA
    Arch Med Res; 2004; 35(1):1-11. PubMed ID: 15036793
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In vitro simultaneous measurements of relaxation and nitric oxide concentration in rat superior mesenteric artery.
    Simonsen U; Wadsworth RM; Buus NH; Mulvany MJ
    J Physiol; 1999 Apr; 516 ( Pt 1)(Pt 1):271-82. PubMed ID: 10066940
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Halothane and isoflurane inhibit endothelium-derived relaxing factor-dependent cyclic guanosine monophosphate accumulation in endothelial cell-vascular smooth muscle co-cultures independent of an effect on guanylyl cyclase activation.
    Johns RA; Tichotsky A; Muro M; Spaeth JP; Le Cras TD; Rengasamy A
    Anesthesiology; 1995 Oct; 83(4):823-34. PubMed ID: 7574063
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Role of phospholamban in NO/EDRF-induced relaxation in rat aorta.
    Karczewski P; Kelm M; Hartmann M; Schrader J
    Life Sci; 1992; 51(15):1205-10. PubMed ID: 1528090
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Model of nitric oxide diffusion in an arteriole: impact of hemoglobin-based blood substitutes.
    Kavdia M; Tsoukias NM; Popel AS
    Am J Physiol Heart Circ Physiol; 2002 Jun; 282(6):H2245-53. PubMed ID: 12003834
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evidence of L-arginine/nitric oxide pathway in endothelium and smooth muscle of human internal mammary artery.
    Qi X; Chen D; Nottin R; Mace L; Herve P; Weiss M
    Biochem Biophys Res Commun; 1993 Aug; 195(1):90-6. PubMed ID: 8395840
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.