These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 12241052)

  • 1. Identification of subcellular energy fluxes by P NMR spectroscopy in the perfused heart: contractility induced modifications of energy transfer pathways.
    Joubert F; Mazet JL; Mateo P; Hoerter JA
    Mol Biol Rep; 2002; 29(1-2):171-6. PubMed ID: 12241052
    [TBL] [Abstract][Full Text] [Related]  

  • 2. 31P NMR detection of subcellular creatine kinase fluxes in the perfused rat heart: contractility modifies energy transfer pathways.
    Joubert F; Mazet JL; Mateo P; Hoerter JA
    J Biol Chem; 2002 May; 277(21):18469-76. PubMed ID: 11886866
    [TBL] [Abstract][Full Text] [Related]  

  • 3. CK flux or direct ATP transfer: versatility of energy transfer pathways evidenced by NMR in the perfused heart.
    Joubert F; Mateo P; Gillet B; Beloeil JC; Mazet JL; Hoerter JA
    Mol Cell Biochem; 2004; 256-257(1-2):43-58. PubMed ID: 14977169
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cardiac creatine kinase metabolite compartments revealed by NMR magnetization transfer spectroscopy and subcellular fractionation.
    Joubert F; Vrezas I; Mateo P; Gillet B; Beloeil JC; Soboll S; Hoerter JA
    Biochemistry; 2001 Feb; 40(7):2129-37. PubMed ID: 11329281
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modeling the energy transfer pathways. creatine kinase activities and heterogeneous distribution of ADP in the perfused heart.
    Joubert F; Hoerter JA; Mazet JL
    Mol Biol Rep; 2002; 29(1-2):177-82. PubMed ID: 12241053
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mathematical model of compartmentalized energy transfer: its use for analysis and interpretation of 31P-NMR studies of isolated heart of creatine kinase deficient mice.
    Aliev MK; van Dorsten FA; Nederhoff MG; van Echteld CJ; Veksler V; Nicolay K; Saks VA
    Mol Cell Biochem; 1998 Jul; 184(1-2):209-29. PubMed ID: 9746323
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Discrimination of cardiac subcellular creatine kinase fluxes by NMR spectroscopy: a new method of analysis.
    Joubert F; Hoerter JA; Mazet JL
    Biophys J; 2001 Dec; 81(6):2995-3004. PubMed ID: 11720970
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modulation of energy transfer pathways between mitochondria and myofibrils by changes in performance of perfused heart.
    Vendelin M; Hoerter JA; Mateo P; Soboll S; Gillet B; Mazet JL
    J Biol Chem; 2010 Nov; 285(48):37240-50. PubMed ID: 20847056
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Differences in nucleotide compartmentation and energy state in isolated and in situ rat heart: assessment by 31P-NMR spectroscopy.
    Williams JP; Headrick JP
    Biochim Biophys Acta; 1996 Aug; 1276(1):71-9. PubMed ID: 8764892
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Metabolic control of contractile performance in isolated perfused rat heart. Analysis of experimental data by reaction:diffusion mathematical model.
    Dos Santos P; Aliev MK; Diolez P; Duclos F; Besse P; Bonoron-Adèle S; Sikk P; Canioni P; Saks VA
    J Mol Cell Cardiol; 2000 Sep; 32(9):1703-34. PubMed ID: 10966833
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cardiac contractile function, oxygen consumption rate and cytosolic phosphates during inhibition of electron flux by amytal--a 31P-NMR study.
    Kupriyanov VV; Lakomkin VL; Korchazhkina OV; Stepanov VA; Steinschneider AYa ; Kapelko VI
    Biochim Biophys Acta; 1991 Jul; 1058(3):386-99. PubMed ID: 2065062
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Kinetics of creatine kinase in an experimental model of low phosphocreatine and ATP in the normoxic heart.
    Stepanov V; Mateo P; Gillet B; Beloeil JC; Lechene P; Hoerter JA
    Am J Physiol; 1997 Oct; 273(4):C1397-408. PubMed ID: 9357786
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Determination of mitochondrial creatine kinase fluxes in intact heart mitochondria using 31P-saturation transfer nuclear magnetic resonance spectroscopy.
    Jahnke D; Gruwel ML; Soboll S
    Biochim Biophys Acta; 1998 Jul; 1365(3):503-12. PubMed ID: 9711302
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Estimation of heart mitochondrial creatine kinase flux using magnetization transfer NMR spectroscopy.
    Zahler R; Ingwall JS
    Am J Physiol; 1992 Apr; 262(4 Pt 2):H1022-8. PubMed ID: 1566885
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analyzing the functional properties of the creatine kinase system with multiscale 'sloppy' modeling.
    Hettling H; van Beek JH
    PLoS Comput Biol; 2011 Aug; 7(8):e1002130. PubMed ID: 21912519
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Compartmentalized energy transfer in cardiomyocytes: use of mathematical modeling for analysis of in vivo regulation of respiration.
    Aliev MK; Saks VA
    Biophys J; 1997 Jul; 73(1):428-45. PubMed ID: 9199806
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Impairment of energy metabolism in intact residual myocardium of rat hearts with chronic myocardial infarction.
    Neubauer S; Horn M; Naumann A; Tian R; Hu K; Laser M; Friedrich J; Gaudron P; Schnackerz K; Ingwall JS
    J Clin Invest; 1995 Mar; 95(3):1092-100. PubMed ID: 7883957
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Measurement of an individual rate constant in the presence of multiple exchanges: application to myocardial creatine kinase reaction.
    Uğurbil K; Petein M; Maidan R; Michurski S; From AH
    Biochemistry; 1986 Jan; 25(1):100-7. PubMed ID: 3954984
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Alteration of the cytosolic-mitochondrial distribution of high-energy phosphates during global myocardial ischemia may contribute to early contractile failure.
    Rauch U; Schulze K; Witzenbichler B; Schultheiss HP
    Circ Res; 1994 Oct; 75(4):760-9. PubMed ID: 7923621
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evidence for myocardial ATP compartmentation from NMR inversion transfer analysis of creatine kinase fluxes.
    Joubert F; Gillet B; Mazet JL; Mateo P; Beloeil J; Hoerter JA
    Biophys J; 2000 Jul; 79(1):1-13. PubMed ID: 10866933
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.