BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 12241057)

  • 1. Effect of enzyme deficiencies on oxidative phosphorylation: from isolated mitochondria to intact tissues. Theoretical studies.
    Korzeniewski B
    Mol Biol Rep; 2002; 29(1-2):197-202. PubMed ID: 12241057
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Influence of substrate activation (hydrolysis of ATP by first steps of glycolysis and beta-oxidation) on the effect of enzyme deficiencies, inhibitors, substrate shortage and energy demand on oxidative phosphorylation.
    Korzeniewski B
    Biophys Chem; 2003 May; 104(1):107-19. PubMed ID: 12834831
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Parallel activation in the ATP supply-demand system lessens the impact of inborn enzyme deficiencies, inhibitors, poisons or substrate shortage on oxidative phosphorylation in vivo.
    Korzeniewski B
    Biophys Chem; 2002 Apr; 96(1):21-31. PubMed ID: 11975991
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Theoretical studies on the regulation of oxidative phosphorylation in intact tissues.
    Korzeniewski B
    Biochim Biophys Acta; 2001 Mar; 1504(1):31-45. PubMed ID: 11239483
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Theoretical studies on the control of oxidative phosphorylation in muscle mitochondria: application to mitochondrial deficiencies.
    Korzeniewski B; Mazat JP
    Biochem J; 1996 Oct; 319 ( Pt 1)(Pt 1):143-8. PubMed ID: 8870661
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of 'binary mitochondrial heteroplasmy' on respiration and ATP synthesis: implications for mitochondrial diseases.
    Korzeniewski B; Malgat M; Letellier T; Mazat JP
    Biochem J; 2001 Aug; 357(Pt 3):835-42. PubMed ID: 11463355
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Metabolic control over the oxygen consumption flux in intact skeletal muscle: in silico studies.
    Liguzinski P; Korzeniewski B
    Am J Physiol Cell Physiol; 2006 Dec; 291(6):C1213-24. PubMed ID: 16760266
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metabolic control analysis and threshold effect in oxidative phosphorylation: implications for mitochondrial pathologies.
    Mazat JP; Letellier T; Bédes F; Malgat M; Korzeniewski B; Jouaville LS; Morkuniene R
    Mol Cell Biochem; 1997 Sep; 174(1-2):143-8. PubMed ID: 9309679
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Theoretical studies on control of oxidative phosphorylation in muscle mitochondria at different energy demands and oxygen concentrations.
    Korzeniewski B; Mazat JP
    Acta Biotheor; 1996 Nov; 44(3-4):263-9. PubMed ID: 8953212
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Simple models of threshold curves in the expression of inborn errors of metabolism: application to some experimental observations.
    Mazat JP; Rossignol R; Malgat M; Letellier T
    Dev Neurosci; 2000; 22(5-6):399-403. PubMed ID: 11111156
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Oxidative phosphorylation: unique regulatory mechanism and role in metabolic homeostasis.
    Wilson DF
    J Appl Physiol (1985); 2017 Mar; 122(3):611-619. PubMed ID: 27789771
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Defects in oxidative phosphorylation. Biochemical investigations in skeletal muscle and expression of the lesion in other cells.
    Scholte HR; Busch HF; Luyt-Houwen IE; Vaandrager-Verduin MH; Przyrembel H; Arts WF
    J Inherit Metab Dis; 1987; 10 Suppl 1():81-97. PubMed ID: 2824921
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mitochondrial cytochrome c oxidase: mechanism of action and role in regulating oxidative phosphorylation.
    Wilson DF; Vinogradov SA
    J Appl Physiol (1985); 2014 Dec; 117(12):1431-9. PubMed ID: 25324518
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Skeletal muscle mitochondria of NDUFS4-/- mice display normal maximal pyruvate oxidation and ATP production.
    Alam MT; Manjeri GR; Rodenburg RJ; Smeitink JA; Notebaart RA; Huynen M; Willems PH; Koopman WJ
    Biochim Biophys Acta; 2015; 1847(6-7):526-33. PubMed ID: 25687896
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rate law of mitochondrial respiration versus extramitochondrial ATP/ADP ratio.
    Bohnensack R
    Biomed Biochim Acta; 1984; 43(4):403-11. PubMed ID: 6487276
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mitochondrial cytochrome c oxidase and control of energy metabolism: measurements in suspensions of isolated mitochondria.
    Wilson DF; Harrison DK; Vinogradov A
    J Appl Physiol (1985); 2014 Dec; 117(12):1424-30. PubMed ID: 25324517
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Regulation of oxidative phosphorylation in different muscles and various experimental conditions.
    Korzeniewski B
    Biochem J; 2003 Nov; 375(Pt 3):799-804. PubMed ID: 12901719
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Factors determining the oxygen consumption rate (VO2) on-kinetics in skeletal muscles.
    Korzeniewski B; Zoladz JA
    Biochem J; 2004 May; 379(Pt 3):703-10. PubMed ID: 14744260
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Theoretical studies on the control of the oxidative phosphorylation system.
    Korzeniewski B; Froncisz W
    Biochim Biophys Acta; 1992 Aug; 1102(1):67-75. PubMed ID: 1324730
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Regulation of ATP supply during muscle contraction: theoretical studies.
    Korzeniewski B
    Biochem J; 1998 Mar; 330 ( Pt 3)(Pt 3):1189-95. PubMed ID: 9494084
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.