These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 12241065)

  • 1. Calculating as many fluxes as possible in underdetermined metabolic networks.
    Klamt S; Schuster S
    Mol Biol Rep; 2002; 29(1-2):243-8. PubMed ID: 12241065
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Calculability analysis in underdetermined metabolic networks illustrated by a model of the central metabolism in purple nonsulfur bacteria.
    Klamt S; Schuster S; Gilles ED
    Biotechnol Bioeng; 2002 Mar; 77(7):734-51. PubMed ID: 11835134
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optimal selection of metabolic fluxes for in vivo measurement. I. Development of mathematical methods.
    Savinell JM; Palsson BO
    J Theor Biol; 1992 Mar; 155(2):201-14. PubMed ID: 1453697
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An interval approach for dealing with flux distributions and elementary modes activity patterns.
    Llaneras F; Picó J
    J Theor Biol; 2007 May; 246(2):290-308. PubMed ID: 17292923
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The principle of flux minimization and its application to estimate stationary fluxes in metabolic networks.
    Holzhütter HG
    Eur J Biochem; 2004 Jul; 271(14):2905-22. PubMed ID: 15233787
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Metabolic control and its analysis. Extensions to the theory and matrix method.
    Sauro HM; Small JR; Fell DA
    Eur J Biochem; 1987 May; 165(1):215-21. PubMed ID: 3569295
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A detailed metabolic flux analysis of an underdetermined network of CHO cells.
    Zamorano F; Wouwer AV; Bastin G
    J Biotechnol; 2010 Dec; 150(4):497-508. PubMed ID: 20869402
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification of flux regulation coefficients from elementary flux modes: A systems biology tool for analysis of metabolic networks.
    Nookaew I; Meechai A; Thammarongtham C; Laoteng K; Ruanglek V; Cheevadhanarak S; Nielsen J; Bhumiratana S
    Biotechnol Bioeng; 2007 Aug; 97(6):1535-49. PubMed ID: 17238207
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Combinatorial complexity of pathway analysis in metabolic networks.
    Klamt S; Stelling J
    Mol Biol Rep; 2002; 29(1-2):233-6. PubMed ID: 12241063
    [TBL] [Abstract][Full Text] [Related]  

  • 10. NExT: integration of thermodynamic constraints and metabolomics data into a metabolic network.
    Martínez VS; Nielsen LK
    Methods Mol Biol; 2014; 1191():65-78. PubMed ID: 25178784
    [TBL] [Abstract][Full Text] [Related]  

  • 11. METATOOL: for studying metabolic networks.
    Pfeiffer T; Sánchez-Valdenebro I; Nuño JC; Montero F; Schuster S
    Bioinformatics; 1999 Mar; 15(3):251-7. PubMed ID: 10222413
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Metabolic flux analysis and visualization.
    Toya Y; Kono N; Arakawa K; Tomita M
    J Proteome Res; 2011 Aug; 10(8):3313-23. PubMed ID: 21815690
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Use of experimental isotope-exchange fluxes in reversible enzyme and membrane transport models, assessed by simultaneous computer simulation of unidirectional and net chemical rates.
    Plesner IW
    Biochem J; 1992 Aug; 286 ( Pt 1)(Pt 1):295-303. PubMed ID: 1325781
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Refined algorithm and computer program for calculating all non-negative fluxes admissible in steady states of biochemical reaction systems with or without some flux rates fixed.
    Schuster R; Schuster S
    Comput Appl Biosci; 1993 Feb; 9(1):79-85. PubMed ID: 8435772
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A hybrid model of anaerobic E. coli GJT001: combination of elementary flux modes and cybernetic variables.
    Kim JI; Varner JD; Ramkrishna D
    Biotechnol Prog; 2008; 24(5):993-1006. PubMed ID: 19194908
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Network analysis of intermediary metabolism using linear optimization. I. Development of mathematical formalism.
    Savinell JM; Palsson BO
    J Theor Biol; 1992 Feb; 154(4):421-54. PubMed ID: 1593896
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Estimating Metabolic Fluxes Using a Maximum Network Flexibility Paradigm.
    Megchelenbrink W; Rossell S; Huynen MA; Notebaart RA; Marchiori E
    PLoS One; 2015; 10(10):e0139665. PubMed ID: 26457579
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Control theory of metabolic channelling.
    Kholodenko BN; Cascante M; Westerhoff HV
    Mol Cell Biochem; 1995 Feb; 143(2):151-68. PubMed ID: 7596350
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Control analysis of biochemical pathways: a novel procedure for calculating control coefficients, and an additional theorem for branched pathways.
    Giersch C
    J Theor Biol; 1988 Oct; 134(4):451-62. PubMed ID: 3255005
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Incorporating metabolic flux ratios into constraint-based flux analysis by using artificial metabolites and converging ratio determinants.
    Choi HS; Kim TY; Lee DY; Lee SY
    J Biotechnol; 2007 May; 129(4):696-705. PubMed ID: 17408794
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.