These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 12241175)

  • 1. Sound velocity and absorption in a coarsening foam.
    Mujica N; Fauve S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Aug; 66(2 Pt 1):021404. PubMed ID: 12241175
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Surfactant solutions and porous substrates: spreading and imbibition.
    Starov VM
    Adv Colloid Interface Sci; 2004 Nov; 111(1-2):3-27. PubMed ID: 15571660
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bubble motion measurements during foam drainage and coarsening.
    Maurdev G; Saint-Jalmes A; Langevin D
    J Colloid Interface Sci; 2006 Aug; 300(2):735-43. PubMed ID: 16677666
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sound propagation in liquid foams: Unraveling the balance between physical and chemical parameters.
    Pierre J; Giraudet B; Chasle P; Dollet B; Saint-Jalmes A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Apr; 91(4):042311. PubMed ID: 25974495
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Coreflood Study of Effect of Surfactant Concentration on Foam Generation in Porous Media.
    Yu G; Rossen WR; Vincent-Bonnieu S
    Ind Eng Chem Res; 2019 Jan; 58(1):420-427. PubMed ID: 30774192
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microfluidic Investigation of Foam Coarsening Dynamics in Porous Media at High-Pressure and High-Temperature Conditions.
    Yu W; Zhou X; Kanj MY
    Langmuir; 2022 Mar; 38(9):2895-2905. PubMed ID: 35192368
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A method to determine the acoustic reflection and absorption coefficients of porous media by using modal dispersion in a waveguide.
    Prisutova J; Horoshenkov K; Groby JP; Brouard B
    J Acoust Soc Am; 2014 Dec; 136(6):2947. PubMed ID: 25480044
    [TBL] [Abstract][Full Text] [Related]  

  • 8. 3D simulations of wet foam coarsening evidence a self similar growth regime.
    Thomas GL; Belmonte JM; Graner F; Glazier JA; de Almeida RM
    Colloids Surf A Physicochem Eng Asp; 2015 May; 473():109-114. PubMed ID: 27630449
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Foam flow in a model porous medium: I. The effect of foam coarsening.
    Jones SA; Getrouw N; Vincent-Bonnieu S
    Soft Matter; 2018 May; 14(18):3490-3496. PubMed ID: 29392252
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Control of Ostwald ripening by using surfactants with high surface modulus.
    Tcholakova S; Mitrinova Z; Golemanov K; Denkov ND; Vethamuthu M; Ananthapadmanabhan KP
    Langmuir; 2011 Dec; 27(24):14807-19. PubMed ID: 22059389
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Foam drainage in the presence of nanoparticle-surfactant mixtures.
    Carn F; Colin A; Pitois O; Vignes-Adler M; Backov R
    Langmuir; 2009 Jul; 25(14):7847-56. PubMed ID: 19594176
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A displacement-pressure finite element formulation for analyzing the sound transmission in ducted shear flows with finite poroelastic lining.
    Nennig B; Tahar MB; Perrey-Debain E
    J Acoust Soc Am; 2011 Jul; 130(1):42-51. PubMed ID: 21786876
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transfer matrix modeling and experimental validation of cellular porous material with resonant inclusions.
    Doutres O; Atalla N; Osman H
    J Acoust Soc Am; 2015 Jun; 137(6):3502-13. PubMed ID: 26093437
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Investigating the origin of acoustic attenuation in liquid foams.
    Pierre J; Gaulon C; Derec C; Elias F; Leroy V
    Eur Phys J E Soft Matter; 2017 Aug; 40(8):73. PubMed ID: 28822121
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Preparation and Sound Absorption Properties of a Barium Titanate/Nitrile Butadiene Rubber-Polyurethane Foam Composite with Multilayered Structure.
    Jiang X; Yang Z; Wang Z; Zhang F; You F; Yao C
    Materials (Basel); 2018 Mar; 11(4):. PubMed ID: 29565321
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A technique for measuring velocity and attenuation of ultrasound in liquid foams.
    Pierre J; Elias F; Leroy V
    Ultrasonics; 2013 Feb; 53(2):622-9. PubMed ID: 23168271
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Surfactant mixtures for control of bubble surface mobility in foam studies.
    Golemanov K; Denkov ND; Tcholakova S; Vethamuthu M; Lips A
    Langmuir; 2008 Sep; 24(18):9956-61. PubMed ID: 18698860
    [TBL] [Abstract][Full Text] [Related]  

  • 18. About the transition frequency in Biot's theory.
    Kurzeja PS; Steeb H
    J Acoust Soc Am; 2012 Jun; 131(6):EL454-60. PubMed ID: 22713021
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Toward mechanistic understanding of the relationship between the sound absorption and the natural and resonant frequencies of porous media.
    Hasani Baferani A; Ohadi AR; Keshavarz R
    J Acoust Soc Am; 2016 Dec; 140(6):4246. PubMed ID: 28040053
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bubble statistics and coarsening dynamics for quasi-two-dimensional foams with increasing liquid content.
    Roth AE; Jones CD; Durian DJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Apr; 87(4):042304. PubMed ID: 23679411
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.