These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 12241279)

  • 1. Measures of intermittency in driven supersonic flows.
    Porter D; Pouquet A; Woodward P
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Aug; 66(2 Pt 2):026301. PubMed ID: 12241279
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of shock waves on the statistics and scaling in compressible isotropic turbulence.
    Wang J; Wan M; Chen S; Xie C; Chen S
    Phys Rev E; 2018 Apr; 97(4-1):043108. PubMed ID: 29758607
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Double scaling and intermittency in shear dominated flows.
    Casciola CM; Benzi R; Gualtieri P; Jacob B; Piva R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Jan; 65(1 Pt 2):015301. PubMed ID: 11800727
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Intermittency in the isotropic component of helical and nonhelical turbulent flows.
    Martin LN; Mininni PD
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Jan; 81(1 Pt 2):016310. PubMed ID: 20365463
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Kinetic and internal energy transfer in implicit large-eddy simulations of forced compressible turbulence.
    Schmidt W; Grete P
    Phys Rev E; 2019 Oct; 100(4-1):043116. PubMed ID: 31771024
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Scaling and statistics in three-dimensional compressible turbulence.
    Wang J; Shi Y; Wang LP; Xiao Z; He XT; Chen S
    Phys Rev Lett; 2012 May; 108(21):214505. PubMed ID: 23003269
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Intermittency and universality in fully developed inviscid and weakly compressible turbulent flows.
    Benzi R; Biferale L; Fisher RT; Kadanoff LP; Lamb DQ; Toschi F
    Phys Rev Lett; 2008 Jun; 100(23):234503. PubMed ID: 18643507
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Anomalous scaling of passive scalars in rotating flows.
    Rodriguez Imazio P; Mininni PD
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Jun; 83(6 Pt 2):066309. PubMed ID: 21797479
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Analysis of intermittency in under-resolved smoothed-particle-hydrodynamics direct numerical simulations of forced compressible turbulence.
    Shi Y; Ellero M; Adams NA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Mar; 85(3 Pt 2):036708. PubMed ID: 22587210
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Scaling of longitudinal and transverse velocity increments in a cylinder wake.
    Zhou T; Hao Z; Chua LP; Yu SC
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Jun; 71(6 Pt 2):066307. PubMed ID: 16089867
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Compressible turbulent mixing: Effects of compressibility.
    Ni Q
    Phys Rev E; 2016 Apr; 93():043116. PubMed ID: 27176399
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Is the scaling of supersonic turbulence universal?
    Schmidt W; Federrath C; Klessen R
    Phys Rev Lett; 2008 Nov; 101(19):194505. PubMed ID: 19113274
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Similarity of intermittency characteristics of temperature and transverse velocity.
    Xu G; Zhou T; Rajagopalan S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Oct; 76(4 Pt 2):046302. PubMed ID: 17995101
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Kazantsev dynamo in turbulent compressible flows.
    Martins Afonso M; Mitra D; Vincenzi D
    Proc Math Phys Eng Sci; 2019 Mar; 475(2223):20180591. PubMed ID: 31007546
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Diffusion in supersonic turbulent compressible flows.
    Klessen RS; Lin DN
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Apr; 67(4 Pt 2):046311. PubMed ID: 12786491
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Solenoidal Scaling Laws for Compressible Mixing.
    Panickacheril John J; Donzis DA; Sreenivasan KR
    Phys Rev Lett; 2019 Nov; 123(22):224501. PubMed ID: 31868425
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nonlocal interactions in hydrodynamic turbulence at high Reynolds numbers: the slow emergence of scaling laws.
    Mininni PD; Alexakis A; Pouquet A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Mar; 77(3 Pt 2):036306. PubMed ID: 18517510
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structure function scaling in compressible super-Alfvénic MHD turbulence.
    Padoan P; Jimenez R; Nordlund A; Boldyrev S
    Phys Rev Lett; 2004 May; 92(19):191102. PubMed ID: 15169394
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Anomalous scaling and refined similarity of an active scalar in a shell model of homogeneous turbulent convection.
    Ching ES; Cheng WC
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Jan; 77(1 Pt 2):015303. PubMed ID: 18351906
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fluctuations of a passive scalar in a turbulent mixing layer.
    Attili A; Bisetti F
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Sep; 88(3):033013. PubMed ID: 24125350
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.