These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 12241329)

  • 1. Self-focusing and merging of two copropagating laser beams in underdense plasma.
    Dong QL; Sheng ZM; Zhang J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Aug; 66(2 Pt 2):027402. PubMed ID: 12241329
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interactive dynamics of two copropagating laser beams in underdense plasmas.
    Wu HC; Sheng ZM; Zhang J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Aug; 70(2 Pt 2):026407. PubMed ID: 15447601
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Resonant self-trapping of high intensity Bessel beams in underdense plasmas.
    Fan J; Parra E; Kim KY; Alexeev I; Milchberg HM; Cooley J; Antonsen TM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 May; 65(5 Pt 2):056408. PubMed ID: 12059716
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cross-focusing of two laser beams in a plasma.
    Bharuthram R; Parashar J
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 1999 Sep; 60(3):3253-6. PubMed ID: 11970136
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modeling the ponderomotive interaction of high-power laser beams with collisional plasma: the FDTD-based approach.
    Lin Z; Chen X; Ding P; Qiu W; Pu J
    Opt Express; 2017 Apr; 25(7):8440-8449. PubMed ID: 28380955
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Time-domain study of the synchrotron radiation emitted from electron beams in plasma focusing channels.
    Curcio A; Gatti G
    Phys Rev E; 2022 Feb; 105(2-2):025201. PubMed ID: 35291175
    [TBL] [Abstract][Full Text] [Related]  

  • 7. All-optical suppression of relativistic self-focusing of laser beams in plasmas.
    Kalmykov SY; Yi SA; Shvets G
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Nov; 78(5 Pt 2):057401. PubMed ID: 19113243
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Relativistic focusing and ponderomotive channeling of intense laser beams.
    Hafizi B; Ting A; Sprangle P; Hubbard RF
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 2000 Sep; 62(3 Pt B):4120-5. PubMed ID: 11088939
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Impact of Laser Beam Speckle Structure on Crossed Beam Energy Transfer via Beam Deflections and Ponderomotive Self-Focusing.
    Raj G; Hüller S
    Phys Rev Lett; 2017 Feb; 118(5):055002. PubMed ID: 28211711
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Compression of laser radiation in plasmas using electromagnetic cascading.
    Kalmykov S; Shvets G
    Phys Rev Lett; 2005 Jun; 94(23):235001. PubMed ID: 16090476
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Propagation of intense short laser pulses in the atmosphere.
    Sprangle P; Peñano JR; Hafizi B
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Oct; 66(4 Pt 2):046418. PubMed ID: 12443341
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dynamics of self-trapped singular beams in an underdense plasma.
    Berezhiani VI; Mahajan SM; Yoshida Z; Pekker M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Apr; 65(4 Pt 2B):046415. PubMed ID: 12006031
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Instability and dynamics of two nonlinearly coupled laser beams in a two-temperature electron plasma.
    Eliasson B; Shukla PK
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Oct; 74(4 Pt 2):046401. PubMed ID: 17155176
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optimization of power compression and stability of relativistic and ponderomotive self-channeling of 248 nm laser pulses in underdense plasmas.
    Davis J; Borisov AB; Rhodes CK
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Dec; 70(6 Pt 2):066406. PubMed ID: 15697513
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Loss-proof self-accelerating beams and their use in non-paraxial manipulation of particles' trajectories.
    Schley R; Kaminer I; Greenfield E; Bekenstein R; Lumer Y; Segev M
    Nat Commun; 2014 Oct; 5():5189. PubMed ID: 25355605
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of pointing fluctuation on intense laser beams propagation in plasma channels.
    Liu M; Deng A; Xia C; Liu J; Wang C; Li R; Xu Z
    Opt Express; 2010 Apr; 18(8):8077-86. PubMed ID: 20588652
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dynamical deformed Airy beams with arbitrary angles between two wings.
    Liang Y; Hu Y; Ye Z; Song D; Lou C; Zhang X; Xu J; Morandotti R; Chen Z
    J Opt Soc Am A Opt Image Sci Vis; 2014 Jul; 31(7):1468-72. PubMed ID: 25121433
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Magnetic Field Generation in Plasma Waves Driven by Copropagating Intense Twisted Lasers.
    Shi Y; Vieira J; Trines RMGM; Bingham R; Shen BF; Kingham RJ
    Phys Rev Lett; 2018 Oct; 121(14):145002. PubMed ID: 30339446
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Control of laser light by a plasma immersed in a tunable strong magnetic field.
    Zheng X; Weng S; Ma H; Wang Y; Chen M; McKenna P; Sheng Z
    Opt Express; 2019 Aug; 27(16):23529-23538. PubMed ID: 31510628
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Two-color laser-ionization injection.
    Yu LL; Esarey E; Schroeder CB; Vay JL; Benedetti C; Geddes CG; Chen M; Leemans WP
    Phys Rev Lett; 2014 Mar; 112(12):125001. PubMed ID: 24724654
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.