These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 12241362)

  • 1. Logarithmic relaxation in glass-forming systems.
    Götze W; Sperl M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Jul; 66(1 Pt 1):011405. PubMed ID: 12241362
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Logarithmic relaxation in a colloidal system.
    Sperl M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Sep; 68(3 Pt 1):031405. PubMed ID: 14524767
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cole-Cole law for critical dynamics in glass-forming liquids.
    Sperl M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Jul; 74(1 Pt 1):011503. PubMed ID: 16907096
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Self-motion and the alpha relaxation in a simulated glass-forming polymer: crossover from Gaussian to non-Gaussian dynamic behavior.
    Colmenero J; Alvarez F; Arbe A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Apr; 65(4 Pt 1):041804. PubMed ID: 12005863
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Higher-order glass-transition singularities in colloidal systems with attractive interactions.
    Dawson K; Foffi G; Fuchs M; Götze W; Sciortino F; Sperl M; Tartaglia P; Voigtmann T; Zaccarelli E
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Jan; 63(1 Pt 1):011401. PubMed ID: 11304254
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In search of temporal power laws in the orientational relaxation near isotropic-nematic phase transition in model nematogens.
    Jose PP; Bagchi B
    J Chem Phys; 2004 Jun; 120(23):11256-66. PubMed ID: 15268154
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Crossover behavior and multistep relaxation in a schematic model of the cut-off glass transition.
    Greenall MJ; Cates ME
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 May; 75(5 Pt 1):051503. PubMed ID: 17677069
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Relaxation dynamics of a viscous silica melt: the intermediate scattering functions.
    Horbach J; Kob W
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Oct; 64(4 Pt 1):041503. PubMed ID: 11690029
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mode-coupling theory for the glassy dynamics of a diatomic probe molecule immersed in a simple liquid.
    Chong SH; Götze W; Singh AP
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Jan; 63(1 Pt 1):011206. PubMed ID: 11304245
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Glass transitions and scaling laws within an alternative mode-coupling theory.
    Götze W; Schilling R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Apr; 91(4):042117. PubMed ID: 25974449
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dynamics in colloidal liquids near a crossing of glass- and gel-transition lines.
    Sperl M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Jan; 69(1 Pt 1):011401. PubMed ID: 14995615
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nearly logarithmic decay in the colloidal hard-sphere system.
    Sperl M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Jun; 71(6 Pt 1):060401. PubMed ID: 16089713
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Logarithmic decay in single-particle relaxation of hydrated lysozyme powder.
    Lagi M; Baglioni P; Chen SH
    Phys Rev Lett; 2009 Sep; 103(10):108102. PubMed ID: 19792343
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural relaxation in a system of dumbbell molecules.
    Chong SH; Götze W
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 May; 65(5 Pt 1):051201. PubMed ID: 12059539
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Generalized mode-coupling theory of the glass transition. II. Analytical scaling laws.
    Luo C; Janssen LMC
    J Chem Phys; 2020 Dec; 153(21):214506. PubMed ID: 33291926
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nearly logarithmic decay of correlations in glass-forming liquids.
    Götze W; Sperl M
    Phys Rev Lett; 2004 Mar; 92(10):105701. PubMed ID: 15089216
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The logarithmic relaxation process and the critical temperature of liquids in nano-confined states.
    Chen C; Wong K; Mole RA; Yu D; Chathoth SM
    Sci Rep; 2016 Sep; 6():33374. PubMed ID: 27671486
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Self-motion in glass-forming polymers: a molecular dynamics study.
    van Zon A; de Leeuw SW
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 1999 Dec; 60(6 Pt B):6942-50. PubMed ID: 11970631
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dynamical susceptibility of glass formers: contrasting the predictions of theoretical scenarios.
    Toninelli C; Wyart M; Berthier L; Biroli G; Bouchaud JP
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Apr; 71(4 Pt 1):041505. PubMed ID: 15903675
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evolution of vibrational excitations in glassy systems.
    Gotze W; Mayr MR
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 2000 Jan; 61(1):587-606. PubMed ID: 11046301
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.