These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 12241476)

  • 21. Derivation of unifying formulae for convective heat transfer in compressible flow fields.
    Zhao B
    Sci Rep; 2021 Aug; 11(1):16762. PubMed ID: 34408187
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Spatial distribution of heat flux and fluctuations in turbulent Rayleigh-Bénard convection.
    Lakkaraju R; Stevens RJ; Verzicco R; Grossmann S; Prosperetti A; Sun C; Lohse D
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Nov; 86(5 Pt 2):056315. PubMed ID: 23214884
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Compressibility effects in Rayleigh-Taylor instability-induced flows.
    Gauthier S; Le Creurer B
    Philos Trans A Math Phys Eng Sci; 2010 Apr; 368(1916):1681-704. PubMed ID: 20211880
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Confinement-induced heat-transport enhancement in turbulent thermal convection.
    Huang SD; Kaczorowski M; Ni R; Xia KQ
    Phys Rev Lett; 2013 Sep; 111(10):104501. PubMed ID: 25166672
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Unsteady natural convection on an evenly heated vertical plate for Prandtl number Pr< 1.
    Lin W; Armfield SW
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Dec; 72(6 Pt 2):066309. PubMed ID: 16486061
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Molecular hints of two-step transition to convective flow via streamline percolation.
    Garrido PL; Hurtado PI
    Phys Rev E; 2022 Jul; 106(1-1):014144. PubMed ID: 35974586
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Convection in a very compressible fluid: comparison of simulations with experiments.
    Furukawa A; Meyer H; Onuki A; Kogan AB
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Nov; 68(5 Pt 2):056309. PubMed ID: 14682886
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Spectral analysis of boundary layers in Rayleigh-Bénard convection.
    Verdoold J; van Reeuwijk M; Tummers MJ; Jonker HJ; Hanjalić K
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Jan; 77(1 Pt 2):016303. PubMed ID: 18351930
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Natural convection heat transfer simulation using energy conservative dissipative particle dynamics.
    Abu-Nada E
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 May; 81(5 Pt 2):056704. PubMed ID: 20866351
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Flow reversals in thermally driven turbulence.
    Sugiyama K; Ni R; Stevens RJ; Chan TS; Zhou SQ; Xi HD; Sun C; Grossmann S; Xia KQ; Lohse D
    Phys Rev Lett; 2010 Jul; 105(3):034503. PubMed ID: 20867768
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Impact of conditions at start-up on thermovibrational convective flow.
    Melnikov DE; Shevtsova VM; Legros JC
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Nov; 78(5 Pt 2):056306. PubMed ID: 19113215
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Wind and boundary layers in Rayleigh-Bénard convection. I. Analysis and modeling.
    van Reeuwijk M; Jonker HJ; Hanjalić K
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Mar; 77(3 Pt 2):036311. PubMed ID: 18517515
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Onset of convection in a very compressible fluid: the transient toward steady state.
    Meyer H; Kogan AB
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Nov; 66(5 Pt 2):056310. PubMed ID: 12513599
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Condensation of Coherent Structures in Turbulent Flows.
    Chong KL; Huang SD; Kaczorowski M; Xia KQ
    Phys Rev Lett; 2015 Dec; 115(26):264503. PubMed ID: 26764994
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Extraction of plumes in turbulent thermal convection.
    Ching ES; Guo H; Shang XD; Tong P; Xia KQ
    Phys Rev Lett; 2004 Sep; 93(12):124501. PubMed ID: 15447267
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Natural convection of a two-dimensional Boussinesq fluid does not maximize entropy production.
    Bartlett S; Bullock S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Aug; 90(2):023014. PubMed ID: 25215827
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Incompressible wave motion of compressible fluids.
    Godin OA
    Phys Rev Lett; 2012 May; 108(19):194501. PubMed ID: 23003046
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The breakdown of the anelastic approximation in rotating compressible convection: implications for astrophysical systems.
    Calkins MA; Julien K; Marti P
    Proc Math Phys Eng Sci; 2015 Mar; 471(2175):20140689. PubMed ID: 25792951
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Boundary layer analysis in turbulent Rayleigh-Bénard convection in air: experiment versus simulation.
    Li L; Shi N; du Puits R; Resagk C; Schumacher J; Thess A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Aug; 86(2 Pt 2):026315. PubMed ID: 23005862
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Prandtl number scaling of unsteady natural convection boundary layers for Pr>1 fluids under isothermal heating.
    Lin W; Armfield SW; Patterson JC; Lei C
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Jun; 79(6 Pt 2):066313. PubMed ID: 19658600
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.