These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
152 related articles for article (PubMed ID: 12241497)
1. Solitons in the noisy Burgers equation. Fogedby HC; Brandenburg A Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Jul; 66(1 Pt 2):016604. PubMed ID: 12241497 [TBL] [Abstract][Full Text] [Related]
2. Kardar-Parisi-Zhang equation in the weak noise limit: pattern formation and upper critical dimension. Fogedby HC Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Mar; 73(3 Pt 1):031104. PubMed ID: 16605497 [TBL] [Abstract][Full Text] [Related]
3. Minimum action method for the Kardar-Parisi-Zhang equation. Fogedby HC; Ren W Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Oct; 80(4 Pt 1):041116. PubMed ID: 19905282 [TBL] [Abstract][Full Text] [Related]
4. Canonical phase-space approach to the noisy Burgers equation: probability distributions. Fogedby HC Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 1999 May; 59(5 Pt A):5065-80. PubMed ID: 11969463 [TBL] [Abstract][Full Text] [Related]
5. Correlations, soliton modes, and non-Hermitian linear mode transmutation in the one-dimensional noisy Burgers equation. Fogedby HC Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Aug; 68(2 Pt 2):026132. PubMed ID: 14525074 [TBL] [Abstract][Full Text] [Related]
6. Universal Kardar-Parisi-Zhang transient diffusion in nonequilibrium anharmonic chains. Ming Y; Hu H; Li HM; Ding ZJ; Ren J Phys Rev E; 2023 Jan; 107(1-1):014204. PubMed ID: 36797957 [TBL] [Abstract][Full Text] [Related]
7. Non-KPZ fluctuations in the derivative of the Kardar-Parisi-Zhang equation or noisy Burgers equation. RodrÃguez-Fernández E; Cuerno R Phys Rev E; 2020 May; 101(5-1):052126. PubMed ID: 32575191 [TBL] [Abstract][Full Text] [Related]
8. Ballistic deposition patterns beneath a growing Kardar-Parisi-Zhang interface. Khanin K; Nechaev S; Oshanin G; Sobolevski A; Vasilyev O Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Dec; 82(6 Pt 1):061107. PubMed ID: 21230644 [TBL] [Abstract][Full Text] [Related]
9. Localized growth modes, dynamic textures, and upper critical dimension for the Kardar-Parisi-Zhang equation in the weak-noise limit. Fogedby HC Phys Rev Lett; 2005 May; 94(19):195702. PubMed ID: 16090188 [TBL] [Abstract][Full Text] [Related]
10. Dynamic screening in a two-species asymmetric exclusion process. Kim KH; den Nijs M Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Aug; 76(2 Pt 1):021107. PubMed ID: 17930006 [TBL] [Abstract][Full Text] [Related]
11. Dynamic criticality far from equilibrium: One-loop flow of Burgers-Kardar-Parisi-Zhang systems with broken Galilean invariance. Strack P Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Mar; 91(3):032131. PubMed ID: 25871078 [TBL] [Abstract][Full Text] [Related]
12. Growing surfaces with anomalous diffusion: results for the fractal Kardar-Parisi-Zhang equation. Katzav E Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Sep; 68(3 Pt 1):031607. PubMed ID: 14524781 [TBL] [Abstract][Full Text] [Related]
13. Dynamic properties in a family of competitive growing models. Horowitz CM; Albano EV Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Mar; 73(3 Pt 1):031111. PubMed ID: 16605504 [TBL] [Abstract][Full Text] [Related]
14. Long-lived solitons and their signatures in the classical Heisenberg chain. McRoberts AJ; Bilitewski T; Haque M; Moessner R Phys Rev E; 2022 Dec; 106(6):L062202. PubMed ID: 36671135 [TBL] [Abstract][Full Text] [Related]
15. The Galerkin-truncated Burgers equation: crossover from inviscid-thermalized to Kardar-Parisi-Zhang scaling. Cartes C; Tirapegui E; Pandit R; Brachet M Philos Trans A Math Phys Eng Sci; 2022 Mar; 380(2219):20210090. PubMed ID: 35094560 [TBL] [Abstract][Full Text] [Related]
16. Fluctuations of self-flattening surfaces. Kim Y; Yoon SY; Park H Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Oct; 66(4 Pt 1):040602. PubMed ID: 12443165 [TBL] [Abstract][Full Text] [Related]
17. Canonical phase-space approach to the noisy Burgers equation. Fogedby HC Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 1999 Oct; 60(4 Pt B):4950-3. PubMed ID: 11970362 [TBL] [Abstract][Full Text] [Related]
18. Upper critical dimension, dynamic exponent, and scaling functions in the mode-coupling theory for the Kardar-Parisi-Zhang equation. Colaiori F; Moore MA Phys Rev Lett; 2001 Apr; 86(18):3946-9. PubMed ID: 11328067 [TBL] [Abstract][Full Text] [Related]
19. Self-consistent mode-coupling approach to the nonlocal Kardar-Parisi-Zhang equation. Hu B; Tang G Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Aug; 66(2 Pt 2):026105. PubMed ID: 12241235 [TBL] [Abstract][Full Text] [Related]
20. Nonlocal Kardar-Parisi-Zhang equation to model interface growth. Kechagia P; Yortsos YC; Lichtner P Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Jul; 64(1 Pt 2):016315. PubMed ID: 11461399 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]