These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 12242048)

  • 21. Complex interactions among residues within pore region determine the K+ dependence of a KAT1-type potassium channel AmKAT1.
    Yang G; Sentenac H; Véry AA; Su Y
    Plant J; 2015 Aug; 83(3):401-12. PubMed ID: 26032087
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Characterization of single inward rectifier potassium channels from embryonic Xenopus laevis myocytes.
    Chauhan-Patel R; Spruce AE
    J Membr Biol; 1997 Aug; 158(3):265-74. PubMed ID: 9263888
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Structure and function of potassium channels in plants: some inferences about the molecular origin of inward rectification in KAT1 channels (Review).
    Latorre R; Muñoz F; González C; Cosmelli D
    Mol Membr Biol; 2003; 20(1):19-25. PubMed ID: 12745922
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Genetic defects in the hotspot of inwardly rectifying K(+) (Kir) channels and their metabolic consequences: a review.
    Pattnaik BR; Asuma MP; Spott R; Pillers DA
    Mol Genet Metab; 2012 Jan; 105(1):64-72. PubMed ID: 22079268
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Low-affinity spermine block mediating outward currents through Kir2.1 and Kir2.2 inward rectifier potassium channels.
    Ishihara K; Yan DH
    J Physiol; 2007 Sep; 583(Pt 3):891-908. PubMed ID: 17640933
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Carboxy-terminal determinants of conductance in inward-rectifier K channels.
    Zhang YY; Robertson JL; Gray DA; Palmer LG
    J Gen Physiol; 2004 Dec; 124(6):729-39. PubMed ID: 15572348
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Gating dependence of inner pore access in inward rectifier K(+) channels.
    Phillips LR; Enkvetchakul D; Nichols CG
    Neuron; 2003 Mar; 37(6):953-62. PubMed ID: 12670424
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Coupling Gbetagamma-dependent activation to channel opening via pore elements in inwardly rectifying potassium channels.
    Sadja R; Smadja K; Alagem N; Reuveny E
    Neuron; 2001 Mar; 29(3):669-80. PubMed ID: 11301026
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Gating and inward rectifying properties of the MthK K+ channel with and without the gating ring.
    Li Y; Berke I; Chen L; Jiang Y
    J Gen Physiol; 2007 Feb; 129(2):109-20. PubMed ID: 17261840
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Molecular aspects of structure, gating, and physiology of pH-sensitive background K2P and Kir K+-transport channels.
    Sepúlveda FV; Pablo Cid L; Teulon J; Niemeyer MI
    Physiol Rev; 2015 Jan; 95(1):179-217. PubMed ID: 25540142
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Crystal structure of the potassium channel KirBac1.1 in the closed state.
    Kuo A; Gulbis JM; Antcliff JF; Rahman T; Lowe ED; Zimmer J; Cuthbertson J; Ashcroft FM; Ezaki T; Doyle DA
    Science; 2003 Jun; 300(5627):1922-6. PubMed ID: 12738871
    [TBL] [Abstract][Full Text] [Related]  

  • 32. K+ activation of kir3.1/kir3.4 and kv1.4 K+ channels is regulated by extracellular charges.
    Claydon TW; Makary SY; Dibb KM; Boyett MR
    Biophys J; 2004 Oct; 87(4):2407-18. PubMed ID: 15454439
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A difference in inward rectification and polyamine block and permeation between the Kir2.1 and Kir3.1/Kir3.4 K+ channels.
    Makary SM; Claydon TW; Enkvetchakul D; Nichols CG; Boyett MR
    J Physiol; 2005 Nov; 568(Pt 3):749-66. PubMed ID: 16109731
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Dissimilarity in the channel intrinsic stability among the bacterial KcsA and the inwardly rectifying potassium channel ROMK1.
    Raja M; Vales E
    Biochimie; 2009; 91(11-12):1426-33. PubMed ID: 19679158
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Molecular coupling between voltage sensor and pore opening in the Arabidopsis inward rectifier K+ channel KAT1.
    Latorre R; Olcese R; Basso C; Gonzalez C; Munoz F; Cosmelli D; Alvarez O
    J Gen Physiol; 2003 Oct; 122(4):459-69. PubMed ID: 14517271
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Gating of the kir2.1 channel at the bundle crossing region by intracellular spermine and other cations.
    Huang CW; Kuo CC
    J Cell Physiol; 2014 Nov; 229(11):1703-21. PubMed ID: 24633623
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Two different conformational states of the KirBac3.1 potassium channel revealed by electron crystallography.
    Kuo A; Domene C; Johnson LN; Doyle DA; Vénien-Bryan C
    Structure; 2005 Oct; 13(10):1463-72. PubMed ID: 16216578
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Structure of potassium channels.
    Kuang Q; Purhonen P; Hebert H
    Cell Mol Life Sci; 2015 Oct; 72(19):3677-93. PubMed ID: 26070303
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Extracellular K+ elevates outward currents through Kir2.1 channels by increasing single-channel conductance.
    Liu TA; Chang HK; Shieh RC
    Biochim Biophys Acta; 2011 Jun; 1808(6):1772-8. PubMed ID: 21376013
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Constitutively active G-protein-gated inwardly rectifying K+ channels in dendrites of hippocampal CA1 pyramidal neurons.
    Chen X; Johnston D
    J Neurosci; 2005 Apr; 25(15):3787-92. PubMed ID: 15829630
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.