BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 12242704)

  • 1. Morphological studies on the mechanisms of pigmentary organelle transport in fish xanthophores and melanophores.
    Kimler VA; Taylor JD
    Microsc Res Tech; 2002 Sep; 58(6):470-80. PubMed ID: 12242704
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Morphological studies on microfilaments and their organizing center in killifish (Fundulus heteroclitus L.) melanophores.
    Kimler VA; Palazzolo KL; Anne P; Haddad MM; Lee JB; Harkins C; Vallarapu B; Taylor JD
    Pigment Cell Res; 2002 Aug; 15(4):298-304. PubMed ID: 12100496
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Does the introduction of a new player, the endoplasmic reticulum, create more or less confusion in understanding the mechanism(s) of pigmentary organelle translocations?
    Taylor JD
    Pigment Cell Res; 1992 Mar; 5(2):49-57. PubMed ID: 1631022
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effects of lumicolchicine, colchicine and vinblastine on pigment migration in fish chromatophores.
    Obika M; Turner WA; Negishi S; Menter DG; Tchen TT; Taylor JD
    J Exp Zool; 1978 Jul; 205(1):95-110. PubMed ID: 670923
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Immunofluorescence evidence for cytoskeletal rearrangement accompanying pigment redistribution in goldfish xanthophores.
    Walker GR; Taylor JD; Tchen TT
    Cell Motil Cytoskeleton; 1989; 14(4):458-68. PubMed ID: 2560413
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Regulation of the distribution of carotenoid droplets in goldfish xanthophores and possible implication to secretory processes.
    Tchen TT; Lo SJ; Lynch TJ; Palazzo RE; Peng G; Walker GR; Wu BY; Yu FX; Taylor JD
    Cell Motil Cytoskeleton; 1988; 10(1-2):143-52. PubMed ID: 2972398
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ultrastructural immunogold localization of some organelle-transport relevant proteins in wholemounted permeabilized nonextracted goldfish xanthophores.
    Kimler VA; Taylor JD
    Pigment Cell Res; 1995 Apr; 8(2):75-82. PubMed ID: 7659680
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dermal and epidermal chromatophores of the Antarctic teleost Trematomus bernacchii.
    Obika M; Meyer-Rochow VB
    Pigment Cell Res; 1990; 3(1):33-7. PubMed ID: 2377579
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The cytoskeleton in fish melanophore melanosome positioning.
    Sköld HN; Aspengren S; Wallin M
    Microsc Res Tech; 2002 Sep; 58(6):464-9. PubMed ID: 12242703
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Actin-dependent carotenoid droplet dispersion in permeabilized cultured goldfish xanthophores.
    Yu FX; Taylor JD; Tchen TT
    Cell Motil Cytoskeleton; 1990; 15(3):139-46. PubMed ID: 2157551
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The changes in cell shape during pigment migration in melanophores of a teleost, Oryzias latipes.
    Obika M
    J Exp Zool; 1975 Mar; 191(3):427-32. PubMed ID: 1127404
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ultrastructural analysis of gene interaction and melanosome differentiation in the retinal pigment cells of the albino goldfish.
    Kajishima T; Takeuchi IK
    J Exp Zool; 1977 Jun; 200(3):349-57. PubMed ID: 874444
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ultrastructural demonstration of hormone-induced movement of carotenoid droplets and endoplasmic reticulum in xanthophores of the goldfish, Carassius auratus L.
    Obika M; Lo SJ; Tchen TT; Taylor JD
    Cell Tissue Res; 1978 Jul; 190(3):409-16. PubMed ID: 210950
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Purification of anterogin, a protein factor necessary for the dispersion of carotenoid droplets in permeabilized xanthophores of goldfish.
    Zeng ZC; Taylor JD; Tchen TT
    Cell Motil Cytoskeleton; 1989; 14(4):485-90. PubMed ID: 2533883
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Melanophores: a model system for neuronal transport and exocytosis?
    Aspengren S; Hedberg D; Wallin M
    J Neurosci Res; 2007 Sep; 85(12):2591-600. PubMed ID: 17149749
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Common origin of pigment cells.
    Bagnara JT; Matsumoto J; Ferris W; Frost SK; Turner WA; Tchen TT; Taylor JD
    Science; 1979 Feb; 203(4379):410-5. PubMed ID: 760198
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Exchange of microtubule molecular motors during melanosome transport in Xenopus laevis melanophores is triggered by collisions with intracellular obstacles.
    Bruno L; Echarte MM; Levi V
    Cell Biochem Biophys; 2008; 52(3):191-201. PubMed ID: 19002657
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Calponin, caldesmon, and chromatophores: The smooth muscle connection.
    Meyer-Rochow VB; Royuela M
    Microsc Res Tech; 2002 Sep; 58(6):504-13. PubMed ID: 12242708
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of colcemid on the centrosome and microtubules in dermal melanophores of Xenopus laevis larvae in vivo.
    Rubin KA; Starodubov SM; Onishchenko GE
    Cell Mol Biol (Noisy-le-grand); 1999 Nov; 45(7):1099-117. PubMed ID: 10644015
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rearrangements of pterinosomes and cytoskeleton accompanying pigment dispersion in goldfish xanthophores.
    Palazzo RE; Lynch TJ; Lo SJ; Taylor JD; Tchen TT
    Cell Motil Cytoskeleton; 1989; 13(1):9-20. PubMed ID: 2543509
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.