BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

222 related articles for article (PubMed ID: 12243165)

  • 1. Characterization of tissue microstructure using ultrasonic backscatter: theory and technique for optimization using a Gaussian form factor.
    Oelze ML; Zachary JF; O'Brien WD
    J Acoust Soc Am; 2002 Sep; 112(3 Pt 1):1202-11. PubMed ID: 12243165
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effective scatterer diameter estimates for broad scatterer size distributions.
    Nordberg EP; Hall TJ
    Ultrason Imaging; 2015 Jan; 37(1):3-21. PubMed ID: 24831300
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Parametric imaging of rat mammary tumors in vivo for the purposes of tissue characterization.
    Oelze ML; Zachary JF; O'Brien WD
    J Ultrasound Med; 2002 Nov; 21(11):1201-10. PubMed ID: 12418761
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Differentiation and characterization of rat mammary fibroadenomas and 4T1 mouse carcinomas using quantitative ultrasound imaging.
    Oelze ML; O'Brien WD; Blue JP; Zachary JF
    IEEE Trans Med Imaging; 2004 Jun; 23(6):764-71. PubMed ID: 15191150
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Method of improved scatterer size estimation and application to parametric imaging using ultrasound.
    Oelze ML; O'Brien WD
    J Acoust Soc Am; 2002 Dec; 112(6):3053-63. PubMed ID: 12509028
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analysis of microstructural alterations of normal and pathological breast tissue in vivo using the AR cepstrum.
    Bige Y; Hanfeng Z; Rong W
    Ultrasonics; 2006 Feb; 44(2):211-5. PubMed ID: 16387338
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identifying ultrasonic scattering sites from three-dimensional impedance maps.
    Mamou J; Oelze ML; O'Brien WD; Zachary JF
    J Acoust Soc Am; 2005 Jan; 117(1):413-23. PubMed ID: 15704434
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Extended three-dimensional impedance map methods for identifying ultrasonic scattering sites.
    Mamou J; Oelze ML; O'Brien WD; Zachary JF
    J Acoust Soc Am; 2008 Feb; 123(2):1195-1208. PubMed ID: 18247919
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Trade-offs in data acquisition and processing parameters for backscatter and scatterer size estimations.
    Liu W; Zagzebski JA
    IEEE Trans Ultrason Ferroelectr Freq Control; 2010; 57(2):340-52. PubMed ID: 20178900
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Techniques and evaluation from a cross-platform imaging comparison of quantitative ultrasound parameters in an in vivo rodent fibroadenoma model.
    Wirtzfeld LA; Nam K; Labyed Y; Ghoshal G; Haak A; Sen-Gupta E; He Z; Hirtz NR; Miller RJ; Sarwate S; Simpson DG; Zagzebski JA; Bigelow TA; Oelze M; Hall TJ; O'Brien WD
    IEEE Trans Ultrason Ferroelectr Freq Control; 2013 Jul; 60(7):1386-400. PubMed ID: 25004506
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Improved diagnostics through quantitative ultrasound imaging.
    Hruska DP; Sanchez J; Oelze ML
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():1956-9. PubMed ID: 19964021
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantitative Ultrasound Comparison of MAT and 4T1 Mammary Tumors in Mice and Rats Across Multiple Imaging Systems.
    Wirtzfeld LA; Ghoshal G; Rosado-Mendez IM; Nam K; Park Y; Pawlicki AD; Miller RJ; Simpson DG; Zagzebski JA; Oelze ML; Hall TJ; O'Brien WD
    J Ultrasound Med; 2015 Aug; 34(8):1373-83. PubMed ID: 26206823
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of adaptive threshold filtering on ultrasonic nakagami parameter to detect variation in scatterer concentration.
    Tsui PH; Wan YL; Huang CC; Wang MC
    Ultrason Imaging; 2010 Oct; 32(4):229-42. PubMed ID: 21213568
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantitative ultrasonic characterization of diffuse scatterers in the presence of structures that produce coherent echoes.
    Luchies AC; Ghoshal G; O'Brien WD; Oelze ML
    IEEE Trans Ultrason Ferroelectr Freq Control; 2012 May; 59(5):893-904. PubMed ID: 22622974
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analysis of human fibroadenomas using three-dimensional impedance maps.
    Dapore AJ; King MR; Harter J; Sarwate S; Oelze ML; Zagzebski JA; Do MN; Hall TJ; O'Brien WD
    IEEE Trans Med Imaging; 2011 Jun; 30(6):1206-13. PubMed ID: 21278015
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of anisotropic myocardial backscatter using spectral slope, intercept and midband fit parameters.
    Yang M; Krueger TM; Miller JG; Holland MR
    Ultrason Imaging; 2007 Apr; 29(2):122-34. PubMed ID: 17679326
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A proposed microscopic elastic wave theory for ultrasonic backscatter from myocardial tissue.
    Rose JH; Kaufmann MR; Wickline SA; Hall CS; Miller JG
    J Acoust Soc Am; 1995 Jan; 97(1):656-68. PubMed ID: 7860840
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantifying B-mode images of in vivo rat mammary tumors by the frequency dependence of backscatter.
    Topp KA; Zachary JF; O'Brien WD
    J Ultrasound Med; 2001 Jun; 20(6):605-12. PubMed ID: 11400934
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluation of the spectral fit algorithm as functions of frequency range and deltakaeff.
    Bigelow TA; O'Brien WD
    IEEE Trans Ultrason Ferroelectr Freq Control; 2005 Nov; 52(11):2003-10. PubMed ID: 16422412
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Statistics of ultrasonic scatterer size estimation with a reference phantom.
    Gerig A; Zagzebski J; Varghese T
    J Acoust Soc Am; 2003 Jun; 113(6):3430-7. PubMed ID: 12822813
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.