These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

91 related articles for article (PubMed ID: 12243400)

  • 1. Flavin mononucleotide enzyme electrode amplified by a bioelectrocatalytic cycle.
    Yao T; Nishimura Y
    Anal Sci; 2002 Sep; 18(9):1035-7. PubMed ID: 12243400
    [No Abstract]   [Full Text] [Related]  

  • 2. The FMN-dependent two-component monooxygenase systems.
    Ellis HR
    Arch Biochem Biophys; 2010 May; 497(1-2):1-12. PubMed ID: 20193654
    [TBL] [Abstract][Full Text] [Related]  

  • 3. BluB cannibalizes flavin to form the lower ligand of vitamin B12.
    Taga ME; Larsen NA; Howard-Jones AR; Walsh CT; Walker GC
    Nature; 2007 Mar; 446(7134):449-53. PubMed ID: 17377583
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biochemistry: molecular cannibalism.
    Ealick SE; Begley TP
    Nature; 2007 Mar; 446(7134):387-8. PubMed ID: 17377573
    [No Abstract]   [Full Text] [Related]  

  • 5. Flavin reductase P: structure of a dimeric enzyme that reduces flavin.
    Tanner JJ; Lei B; Tu SC; Krause KL
    Biochemistry; 1996 Oct; 35(42):13531-9. PubMed ID: 8885832
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Kinetics of a two-component p-hydroxyphenylacetate hydroxylase explain how reduced flavin is transferred from the reductase to the oxygenase.
    Sucharitakul J; Phongsak T; Entsch B; Svasti J; Chaiyen P; Ballou DP
    Biochemistry; 2007 Jul; 46(29):8611-23. PubMed ID: 17595116
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thermodynamic analysis of the binding of oxidized and reduced FMN cofactor to Vibrio harveyi NADPH-FMN oxidoreductase FRP apoenzyme.
    Li X; Chow DC; Tu SC
    Biochemistry; 2006 Dec; 45(49):14781-7. PubMed ID: 17144671
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Vibrio harveyi flavin reductase--luciferase fusion protein mimics a single-component bifunctional monooxygenase.
    Jawanda N; Ahmed K; Tu SC
    Biochemistry; 2008 Jan; 47(1):368-77. PubMed ID: 18067321
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Functions of flavin reductase and quinone reductase in 2,4,6-trichlorophenol degradation by Cupriavidus necator JMP134.
    Belchik SM; Xun L
    J Bacteriol; 2008 Mar; 190(5):1615-9. PubMed ID: 18165297
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synechocystis DrgA protein functioning as nitroreductase and ferric reductase is capable of catalyzing the Fenton reaction.
    Takeda K; Iizuka M; Watanabe T; Nakagawa J; Kawasaki S; Niimura Y
    FEBS J; 2007 Mar; 274(5):1318-27. PubMed ID: 17298443
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Flavin mononucleotide mediated electron pathway for microbial U(VI) reduction.
    Suzuki Y; Kitatsuji Y; Ohnuki T; Tsujimura S
    Phys Chem Chem Phys; 2010 Sep; 12(34):10081-7. PubMed ID: 20623083
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High pressure refolding, purification, and crystallization of flavin reductase from Sulfolobus tokodaii strain 7.
    Okai M; Ohtsuka J; Asano A; Guo L; Miyakawa T; Miyazono K; Nakamura A; Okada A; Zheng H; Kimura K; Nagata K; Tanokura M
    Protein Expr Purif; 2012 Aug; 84(2):214-8. PubMed ID: 22722101
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Functional assembly of camphor converting two-component Baeyer-Villiger monooxygenases with a flavin reductase from E. coli.
    Kadow M; Balke K; Willetts A; Bornscheuer UT; Bäckvall JE
    Appl Microbiol Biotechnol; 2014 May; 98(9):3975-86. PubMed ID: 24190498
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electrochemical reduction of methemoglobin either directly or with flavin mononucleotide as a mediator.
    Durliat H; Comtat M
    J Biol Chem; 1987 Aug; 262(24):11497-500. PubMed ID: 3624223
    [TBL] [Abstract][Full Text] [Related]  

  • 15. NADH dehydrogenase-like behavior of nitrogen-doped graphene and its application in NAD(+)-dependent dehydrogenase biosensing.
    Gai PP; Zhao CE; Wang Y; Abdel-Halim ES; Zhang JR; Zhu JJ
    Biosens Bioelectron; 2014 Dec; 62():170-6. PubMed ID: 24999994
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bioelectrocatalytic detection of theophylline at theophylline oxidase electrodes.
    Ferapontova EE; Shipovskov S; Gorton L
    Biosens Bioelectron; 2007 May; 22(11):2508-15. PubMed ID: 17081743
    [TBL] [Abstract][Full Text] [Related]  

  • 17. 2-thioriboflavin 5'-phosphate (2-thio-FMN) lactate oxidase.
    Choong YS; Massey V
    Eur J Biochem; 1983 Apr; 131(3):501-8. PubMed ID: 6840063
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structure, biochemical and kinetic properties of recombinant Pst2p from Saccharomyces cerevisiae, a FMN-dependent NAD(P)H:quinone oxidoreductase.
    Koch K; Hromic A; Sorokina M; Strandback E; Reisinger M; Gruber K; Macheroux P
    Biochim Biophys Acta Proteins Proteom; 2017 Aug; 1865(8):1046-1056. PubMed ID: 28499769
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Determination of the redox potentials and electron transfer properties of the FAD- and FMN-binding domains of the human oxidoreductase NR1.
    Finn RD; Basran J; Roitel O; Wolf CR; Munro AW; Paine MJ; Scrutton NS
    Eur J Biochem; 2003 Mar; 270(6):1164-75. PubMed ID: 12631275
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Differential transfers of reduced flavin cofactor and product by bacterial flavin reductase to luciferase.
    Jeffers CE; Tu SC
    Biochemistry; 2001 Feb; 40(6):1749-54. PubMed ID: 11327836
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.