These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
142 related articles for article (PubMed ID: 12243848)
1. Haemodynamic factors and the important role of local low static pressure in coronary wall thickening. Giannoglou GD; Soulis JV; Farmakis TM; Farmakis DM; Louridas GE Int J Cardiol; 2002 Nov; 86(1):27-40. PubMed ID: 12243848 [TBL] [Abstract][Full Text] [Related]
2. Compliant model of a coupled sequential coronary arterial bypass graft: effects of vessel wall elasticity and non-Newtonian rheology on blood flow regime and hemodynamic parameters distribution. Kabinejadian F; Ghista DN Med Eng Phys; 2012 Sep; 34(7):860-72. PubMed ID: 22032834 [TBL] [Abstract][Full Text] [Related]
3. Effect of non-Newtonian fluid rheology on an arterial bypass graft: A numerical investigation guided by constructal design. Dutra RF; Zinani FSF; Rocha LAO; Biserni C Comput Methods Programs Biomed; 2021 Apr; 201():105944. PubMed ID: 33535083 [TBL] [Abstract][Full Text] [Related]
5. Pulsatile flow of non-Newtonian blood fluid inside stenosed arteries: Investigating the effects of viscoelastic and elastic walls, arteriosclerosis, and polycythemia diseases. Nejad AA; Talebi Z; Cheraghali D; Shahbani-Zahiri A; Norouzi M Comput Methods Programs Biomed; 2018 Feb; 154():109-122. PubMed ID: 29249336 [TBL] [Abstract][Full Text] [Related]
6. Development of an Experimental and Digital Cardiovascular Arterial Model for Transient Hemodynamic and Postural Change Studies: "A Preliminary Framework Analysis". Hewlin RL; Kizito JP Cardiovasc Eng Technol; 2018 Mar; 9(1):1-31. PubMed ID: 29124548 [TBL] [Abstract][Full Text] [Related]
7. Non-Newtonian models for molecular viscosity and wall shear stress in a 3D reconstructed human left coronary artery. Soulis JV; Giannoglou GD; Chatzizisis YS; Seralidou KV; Parcharidis GE; Louridas GE Med Eng Phys; 2008 Jan; 30(1):9-19. PubMed ID: 17412633 [TBL] [Abstract][Full Text] [Related]
8. Computed numerical analysis of the biomechanical effects on coronary atherogenesis using human hemodynamic and dimensional variables. Lee BK; Kwon HM; Kim D; Yoon YW; Seo JK; Kim IJ; Roh HW; Suh SH; Yoo SS; Kim HS Yonsei Med J; 1998 Apr; 39(2):166-74. PubMed ID: 9587258 [TBL] [Abstract][Full Text] [Related]
9. Hemodynamic Parameters and Early Intimal Thickening in Branching Blood Vessels. Kleinstreuer C; Hyun S; Buchanan JR; Longest PW; Archie JP; Truskey GA Crit Rev Biomed Eng; 2017; 45(1-6):319-382. PubMed ID: 29953383 [TBL] [Abstract][Full Text] [Related]
10. A numerical study on hemodynamics in the left coronary bifurcation with normal and hypertension conditions. Bahrami S; Norouzi M Biomech Model Mechanobiol; 2018 Dec; 17(6):1785-1796. PubMed ID: 30027356 [TBL] [Abstract][Full Text] [Related]
11. Haemodynamic assessment of human coronary arteries is affected by degree of freedom of artery movement. Javadzadegan A; Yong AS; Chang M; Ng MK; Behnia M; Kritharides L Comput Methods Biomech Biomed Engin; 2017 Feb; 20(3):260-272. PubMed ID: 27467730 [TBL] [Abstract][Full Text] [Related]
13. Non-Newtonian blood flow in human right coronary arteries: steady state simulations. Johnston BM; Johnston PR; Corney S; Kilpatrick D J Biomech; 2004 May; 37(5):709-20. PubMed ID: 15047000 [TBL] [Abstract][Full Text] [Related]
14. Effects of the non-Newtonian viscosity of blood on flows in a diseased arterial vessel. Part 1: Steady flows. Cho YI; Kensey KR Biorheology; 1991; 28(3-4):241-62. PubMed ID: 1932716 [TBL] [Abstract][Full Text] [Related]
16. Relation between plaque type, plaque thickness, blood shear stress, and plaque stress in coronary arteries assessed by X-ray angiography and intravascular ultrasound. Balocco S; Gatta C; Alberti M; Carrillo X; Rigla J; Radeva P Med Phys; 2012 Dec; 39(12):7430-45. PubMed ID: 23231293 [TBL] [Abstract][Full Text] [Related]
17. Accurate prediction of wall shear stress in a stented artery: newtonian versus non-newtonian models. Mejia J; Mongrain R; Bertrand OF J Biomech Eng; 2011 Jul; 133(7):074501. PubMed ID: 21823750 [TBL] [Abstract][Full Text] [Related]
18. Influence of model boundary conditions on blood flow patterns in a patient specific stenotic right coronary artery. Liu B; Zheng J; Bach R; Tang D Biomed Eng Online; 2015; 14 Suppl 1(Suppl 1):S6. PubMed ID: 25602370 [TBL] [Abstract][Full Text] [Related]
19. Effect of magnetic field on haemodynamic perturbations in atherosclerotic coronary arteries. Javadzadegan A; Moshfegh A; Behnia M J Med Eng Technol; 2018 Feb; 42(2):148-156. PubMed ID: 29575961 [TBL] [Abstract][Full Text] [Related]
20. Investigation of blood flow rheology using second-grade viscoelastic model (Phan-Thien-Tanner) within carotid artery. Ramiar A; Larimi MM; Ranjbar AA Acta Bioeng Biomech; 2017; 19(3):27-41. PubMed ID: 29205216 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]