BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 12244097)

  • 1. Bcl-x(L) complements Saccharomyces cerevisiae genes that facilitate the switch from glycolytic to oxidative metabolism.
    Vander Heiden MG; Choy JS; VanderWeele DJ; Brace JL; Harris MH; Bauer DE; Prange B; Kron SJ; Thompson CB; Rudin CM
    J Biol Chem; 2002 Nov; 277(47):44870-6. PubMed ID: 12244097
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mitochondrial fission proteins regulate programmed cell death in yeast.
    Fannjiang Y; Cheng WC; Lee SJ; Qi B; Pevsner J; McCaffery JM; Hill RB; Basañez G; Hardwick JM
    Genes Dev; 2004 Nov; 18(22):2785-97. PubMed ID: 15520274
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Svf1 inhibits reactive oxygen species generation and promotes survival under conditions of oxidative stress in Saccharomyces cerevisiae.
    Brace JL; Vanderweele DJ; Rudin CM
    Yeast; 2005 Jun; 22(8):641-52. PubMed ID: 16034825
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fluorescence Detection of Increased Reactive Oxygen Species Levels in Saccharomyces cerevisiae at the Diauxic Shift.
    Sinha A; Pick E
    Methods Mol Biol; 2021; 2202():81-91. PubMed ID: 32857348
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Response of yeast to the regulated expression of proteins in the Bcl-2 family.
    Polcic P; Forte M
    Biochem J; 2003 Sep; 374(Pt 2):393-402. PubMed ID: 12780347
    [TBL] [Abstract][Full Text] [Related]  

  • 6. ISC1-dependent metabolic adaptation reveals an indispensable role for mitochondria in induction of nuclear genes during the diauxic shift in Saccharomyces cerevisiae.
    Kitagaki H; Cowart LA; Matmati N; Montefusco D; Gandy J; de Avalos SV; Novgorodov SA; Zheng J; Obeid LM; Hannun YA
    J Biol Chem; 2009 Apr; 284(16):10818-30. PubMed ID: 19179331
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reconstituting the Mammalian Apoptotic Switch in Yeast.
    Polčic P; Mentel M
    Genes (Basel); 2020 Jan; 11(2):. PubMed ID: 32013249
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Saccharomyces cerevisiae Cytosolic Thioredoxins Control Glycolysis, Lipid Metabolism, and Protein Biosynthesis under Wine-Making Conditions.
    Picazo C; McDonagh B; Peinado J; Bárcena JA; Matallana E; Aranda A
    Appl Environ Microbiol; 2019 Apr; 85(7):. PubMed ID: 30683739
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Coregulation of starch degradation and dimorphism in the yeast Saccharomyces cerevisiae.
    Vivier MA; Lambrechts MG; Pretorius IS
    Crit Rev Biochem Mol Biol; 1997; 32(5):405-35. PubMed ID: 9383611
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fermentative metabolism impedes p53-dependent apoptosis in a Crabtree-positive but not in Crabtree-negative yeast.
    Kumar A; Dandekar JU; Bhat PJ
    J Biosci; 2017 Dec; 42(4):585-601. PubMed ID: 29229877
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cell death with predominant apoptotic features in Saccharomyces cerevisiae mediated by deletion of the histone chaperone ASF1/CIA1.
    Yamaki M; Umehara T; Chimura T; Horikoshi M
    Genes Cells; 2001 Dec; 6(12):1043-54. PubMed ID: 11737265
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inherent calcineurin inhibitor FKBP38 targets Bcl-2 to mitochondria and inhibits apoptosis.
    Shirane M; Nakayama KI
    Nat Cell Biol; 2003 Jan; 5(1):28-37. PubMed ID: 12510191
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Production of reactive oxygen species and loss of viability in yeast mitochondrial mutants: protective effect of Bcl-xL.
    Trancíková A; Weisová P; Kissová I; Zeman I; Kolarov J
    FEMS Yeast Res; 2004 Nov; 5(2):149-56. PubMed ID: 15489198
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Increased heme synthesis in yeast induces a metabolic switch from fermentation to respiration even under conditions of glucose repression.
    Zhang T; Bu P; Zeng J; Vancura A
    J Biol Chem; 2017 Oct; 292(41):16942-16954. PubMed ID: 28830930
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role of oxidative phosphorylation in Bax toxicity.
    Harris MH; Vander Heiden MG; Kron SJ; Thompson CB
    Mol Cell Biol; 2000 May; 20(10):3590-6. PubMed ID: 10779348
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Under respiratory growth conditions, Bcl-x(L) and Bcl-2 are unable to overcome yeast cell death triggered by a mutant Bax protein lacking the membrane anchor.
    Clow A; Greenhalf W; Chaudhuri B
    Eur J Biochem; 1998 Nov; 258(1):19-28. PubMed ID: 9851687
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bcl-xL regulates apoptosis by heterodimerization-dependent and -independent mechanisms.
    Minn AJ; Kettlun CS; Liang H; Kelekar A; Vander Heiden MG; Chang BS; Fesik SW; Fill M; Thompson CB
    EMBO J; 1999 Feb; 18(3):632-43. PubMed ID: 9927423
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Role of mitochondria and C-terminal membrane anchor of Bcl-2 in Bax induced growth arrest and mortality in Saccharomyces cerevisiae.
    Greenhalf W; Stephan C; Chaudhuri B
    FEBS Lett; 1996 Feb; 380(1-2):169-75. PubMed ID: 8603730
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bcl-2 family members inhibit oxidative stress-induced programmed cell death in Saccharomyces cerevisiae.
    Chen SR; Dunigan DD; Dickman MB
    Free Radic Biol Med; 2003 May; 34(10):1315-25. PubMed ID: 12726919
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Role of Bcl-2 family proteins in a non-apoptotic programmed cell death dependent on autophagy genes.
    Shimizu S; Kanaseki T; Mizushima N; Mizuta T; Arakawa-Kobayashi S; Thompson CB; Tsujimoto Y
    Nat Cell Biol; 2004 Dec; 6(12):1221-8. PubMed ID: 15558033
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.