These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

75 related articles for article (PubMed ID: 12244221)

  • 1. Evidence for Chilling-Induced Oxidative Stress in Maize Seedlings and a Regulatory Role for Hydrogen Peroxide.
    Prasad TK; Anderson MD; Martin BA; Stewart CR
    Plant Cell; 1994 Jan; 6(1):65-74. PubMed ID: 12244221
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Acclimation, Hydrogen Peroxide, and Abscisic Acid Protect Mitochondria against Irreversible Chilling Injury in Maize Seedlings.
    Prasad TK; Anderson MD; Stewart CR
    Plant Physiol; 1994 Jun; 105(2):619-627. PubMed ID: 12232229
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Differential Gene Expression in Chilling-Acclimated Maize Seedlings and Evidence for the Involvement of Abscisic Acid in Chilling Tolerance.
    Anderson MD; Prasad TK; Martin BA; Stewart CR
    Plant Physiol; 1994 May; 105(1):331-339. PubMed ID: 12232205
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Role of Catalase in Inducing Chilling Tolerance in Pre-Emergent Maize Seedlings.
    Prasad TK
    Plant Physiol; 1997 Aug; 114(4):1369-1376. PubMed ID: 12223775
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Changes in Isozyme Profiles of Catalase, Peroxidase, and Glutathione Reductase during Acclimation to Chilling in Mesocotyls of Maize Seedlings.
    Anderson MD; Prasad TK; Stewart CR
    Plant Physiol; 1995 Dec; 109(4):1247-1257. PubMed ID: 12228666
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Localization and Characterization of Peroxidases in the Mitochondria of Chilling-Acclimated Maize Seedlings.
    Prasad TK; Anderson MD; Stewart CR
    Plant Physiol; 1995 Aug; 108(4):1597-1605. PubMed ID: 12228565
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Exogenous abscisic acid increases antioxidant enzymes and related gene expression in pepper (Capsicum annuum) leaves subjected to chilling stress.
    Guo WL; Chen RG; Gong ZH; Yin YX; Ahmed SS; He YM
    Genet Mol Res; 2012 Nov; 11(4):4063-80. PubMed ID: 23079969
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of exogenous H2O2 on antioxidant enzymes of Brassica juncea L. seedlings in relation to 24-epibrassinolide under chilling stress.
    Kumar M; Sirhindi G; Bhardwaj R; Kumar S; Jain G
    Indian J Biochem Biophys; 2010 Dec; 47(6):378-82. PubMed ID: 21355422
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of exogenous nitric oxide in wheat seedlings under chilling stress.
    Esim N; Atici O; Mutlu S
    Toxicol Ind Health; 2014 Apr; 30(3):268-74. PubMed ID: 22903172
    [TBL] [Abstract][Full Text] [Related]  

  • 10. H2O2 treatment induces glutathione accumulation and chilling tolerance in mung bean.
    Yu CW; Murphy TM; Sung WW; Lin CH
    Funct Plant Biol; 2002 Aug; 29(9):1081-1087. PubMed ID: 32689559
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Responses of mulberry seedlings photosynthesis and antioxidant enzymes to chilling stress after low-temperature acclimation].
    Xu N; Sun GY
    Ying Yong Sheng Tai Xue Bao; 2009 Apr; 20(4):761-6. PubMed ID: 19565752
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of CO2 laser radiation on physiological tolerance of wheat seedlings exposed to chilling stress.
    Chen YP; Jia JF; Yue M
    Photochem Photobiol; 2010; 86(3):600-5. PubMed ID: 20408975
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Acetylsalicylic acid enhance tolerance of Phaseolus vulgaris L. to chilling stress, improving photosynthesis, antioxidants and expression of cold stress responsive genes.
    Soliman MH; Alayafi AAM; El Kelish AA; Abu-Elsaoud AM
    Bot Stud; 2018 Feb; 59(1):6. PubMed ID: 29450670
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Changes in Activities of Antioxidant Enzymes and Their Relationship to Genetic and Paclobutrazol-Induced Chilling Tolerance of Maize Seedlings.
    Pinhero RG; Rao MV; Paliyath G; Murr DP; Fletcher RA
    Plant Physiol; 1997 Jun; 114(2):695-704. PubMed ID: 12223737
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Maize Tolerance against Drought and Chilling Stresses Varied with Root Morphology and Antioxidative Defense System.
    Hussain HA; Men S; Hussain S; Zhang Q; Ashraf U; Anjum SA; Ali I; Wang L
    Plants (Basel); 2020 Jun; 9(6):. PubMed ID: 32517168
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hydrogen peroxide-induced chilling tolerance in mung beans mediated through ABA-independent glutathione accumulation.
    Yu CW; Murphy TM; Lin CH
    Funct Plant Biol; 2003 Oct; 30(9):955-963. PubMed ID: 32689080
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Physiological and Biochemical Mechanisms of Seed Priming-Induced Chilling Tolerance in Rice Cultivars.
    Hussain S; Khan F; Hussain HA; Nie L
    Front Plant Sci; 2016; 7():116. PubMed ID: 26904078
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of lanthanides on the antioxidative defense system in maize seedlings under cold stress.
    Wang Y; Zhou M; Gong X; Liu C; Hong M; Wang L; Hong F
    Biol Trace Elem Res; 2011 Sep; 142(3):819-30. PubMed ID: 20737244
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chilling tolerance of maize, cucumber and rice seedling leaves and roots are differentially affected by salicylic acid.
    Kang HM; Saltveit ME
    Physiol Plant; 2002 Aug; 115(4):571-576. PubMed ID: 12121463
    [TBL] [Abstract][Full Text] [Related]  

  • 20. DNA Damage Inducible Protein 1 is Involved in Cold Adaption of Harvested Cucumber Fruit.
    Wang B; Wang G; Zhu S
    Front Plant Sci; 2019; 10():1723. PubMed ID: 32038689
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.