BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 122545)

  • 1. Modification of erythrocyte physicochemical properties by millimolar concentrations of glutaraldehyde.
    Corry WD; Meiselman HJ
    Blood Cells; 1978; 4(3):465-83. PubMed ID: 122545
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modification of erythrocyte physicochemical properties by millimolar concentrations of glutaraldehyde.
    Corry WD; Meiselman HJ
    Blood Cells; 1980; 6(1):93-5. PubMed ID: 6766073
    [No Abstract]   [Full Text] [Related]  

  • 3. Kinetics of glutaraldehyde fixation of erythrocytes: size, deformability, form, osmotic and hemolytic properties.
    Yee JP; Mel HC
    Blood Cells; 1978; 4(3):485-97. PubMed ID: 122546
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Glutaraldehyde effect on the osmotic fragility and rate of haemolysis of human erythrocytes: a kinetic study.
    Constantinescu A; Mărgineanu DG
    Arch Int Physiol Biochim; 1982 Nov; 90(4):277-84. PubMed ID: 6188431
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reaction of glutaraldehyde with human erytrocytes.
    de Carvalho JG; Osório e Castro VR; Perrone JC
    An Acad Bras Cienc; 1980 Jun; 52(2):419-26. PubMed ID: 6779688
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of two methods in erythrocyte microrheology determination using glutaraldehyde-treated cells.
    Mirossay L; Mojzis J; Jandoseková M; Lukacín S; Nicák A
    Clin Hemorheol Microcirc; 1997; 17(3):187-92. PubMed ID: 9356782
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Differences between cation-osmotic hemolysis and filterability in exaprolol- and glutaraldehyde-treated human red blood cells.
    Mojzis J; Nicák A; Linková A; Jandoseková M; Mirossay L
    Physiol Res; 1999; 48(6):411-6. PubMed ID: 10783905
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Glutaraldehyde mediated echinocyte/discocyte transformation is Ca2+ dependent.
    Mönch E; Halbhuber KJ; Fröber R; Unger J; Geyer G
    Folia Haematol Int Mag Klin Morphol Blutforsch; 1978; 105(5):672-8. PubMed ID: 85577
    [TBL] [Abstract][Full Text] [Related]  

  • 9. ROS production and their influence on the cellular antioxidative system in human erythrocytes incubated with daunorubicin and glutaraldehyde.
    Marczak A; Bukowska B
    Environ Toxicol Pharmacol; 2013 Jul; 36(1):171-81. PubMed ID: 23612522
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The combined effect of IDA and glutaraldehyde on the erythrocyte membrane proteins.
    Marczak A; Walczak M; Jóźwiak Z
    Int J Pharm; 2007 Apr; 335(1-2):154-162. PubMed ID: 17158004
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Role of erythrocyte deformability during capillary wetting.
    Zhou R; Gordon J; Palmer AF; Chang HC
    Biotechnol Bioeng; 2006 Feb; 93(2):201-11. PubMed ID: 16302256
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The interaction of DNR and glutaraldehyde with cell membrane proteins leads to morphological changes in erythrocytes.
    Marczak A; Jóźwiak Z
    Cancer Lett; 2008 Feb; 260(1-2):118-26. PubMed ID: 18060688
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Intramembranous particle distribution in human erythrocytes: effects of lysis, glutaraldehyde, and poly-L-lysine.
    Pricam C; Fisher KA; Friend DS
    Anat Rec; 1977 Dec; 189(4):595-607. PubMed ID: 413458
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Coinfusion of dextrose-containing fluids and red blood cells does not adversely affect in vitro red blood cell quality.
    Keir AK; Hansen AL; Callum J; Jankov RP; Acker JP
    Transfusion; 2014 Aug; 54(8):2068-76. PubMed ID: 24673191
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reversible cross-linking and CO treatment as an approach in red cell stabilization.
    Bakaltcheva I; Leslie S; MacDonald V; Spargo B; Rudolph A
    Cryobiology; 2000 Jun; 40(4):343-59. PubMed ID: 10924266
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Physicochemical effects of aldehydes on the human erythrocyte.
    Vassar PS; Hards JM; Brooks DE; Hagenberger B; Seaman GV
    J Cell Biol; 1972 Jun; 53(3):809-18. PubMed ID: 5028261
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of glutaraldehyde and critical point drying on the shape and size of erythrocytes in isotonic and hypotonic media.
    Eskelinen S; Saukko P
    J Microsc; 1983 Apr; 130(Pt 1):63-71. PubMed ID: 6406673
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of glutaraldehyde treatment on enzyme-loaded erythrocytes.
    Deloach J; Peters S; Pinkard O; Glew R; Ihler G
    Biochim Biophys Acta; 1977 Feb; 496(2):507-15. PubMed ID: 402162
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of treatment with glutaraldehyde and of storage in acid-citrate-dextrose solution on agglutinability of erythrocytes.
    Nishi K; Yamada M; Wakasugi C
    Nihon Hoigaku Zasshi; 1983 Dec; 37(6):757-63. PubMed ID: 6431157
    [No Abstract]   [Full Text] [Related]  

  • 20. The rate of osmotic hemolysis: a relationship with membrane bilayer fluidity.
    Araki K; Rifkind JM
    Biochim Biophys Acta; 1981 Jul; 645(1):81-90. PubMed ID: 6266477
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.