These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 1225466)

  • 21. Primary afferent fiber distribution at brachial and lumbosacral spinal cord levels in the opossum (Didelphis marsupialis virigniana).
    Culberson JL; Kimmel DL
    Brain Behav Evol; 1975; 12(4-6):229-46. PubMed ID: 1225464
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Cerebellar cortical efferent fibers in the North American opossum, Didelphis virginiana. II. The posterior vermis.
    Klinkhachorn PS; Haines DE; Culberson JL
    J Comp Neurol; 1984 Aug; 227(3):439-51. PubMed ID: 6480901
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A further evaluation of the origin, the course and the termination of the opossum corticospinal tract.
    Martin GF; Fisher AM
    J Neurol Sci; 1968; 7(1):177-87. PubMed ID: 5696304
    [No Abstract]   [Full Text] [Related]  

  • 24. The inferior olivary nucleus of the opossum (Didelphis marsupialis virginiana), its organization and connections.
    Martin GF; Dom R; King JS; RoBards M; Watson CR
    J Comp Neurol; 1975 Apr; 160(4):507-33. PubMed ID: 1123465
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Anatomical demonstration of the location and collateralization of rubral neurons which project to the spinal cord, lateral brainstem and inferior olive in the North American opossum.
    Martin GF; Cabana T; Waltzer R
    Brain Behav Evol; 1983; 23(3-4):93-109. PubMed ID: 6667372
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Development of catecholaminergic projections to the spinal cord in the North American opossum, Didelphis virginiana.
    Pindzola RR; Ho RH; Martin GF
    J Comp Neurol; 1990 Apr; 294(3):399-417. PubMed ID: 1971285
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Efferent neocortical projections to sensory nuclei in the brain stem of the opossum (Didelphys virginiana).
    Martin GF; West HJ
    J Neurol Sci; 1967; 5(2):287-302. PubMed ID: 6057507
    [No Abstract]   [Full Text] [Related]  

  • 28. Cerebellar cortical efferent fibers in the North American opossum, Didelphis virginiana. I. The anterior lobe.
    Klinkhachorn PS; Haines DE; Culberson JL
    J Comp Neurol; 1984 Aug; 227(3):424-38. PubMed ID: 6480900
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The motor nucleus of the facial nerve in the opossum (Didelphis marsupialis virginiana). Its organization and connections.
    Dom R; Falls W; Martin GF
    J Comp Neurol; 1973 Dec; 152(4):373-401. PubMed ID: 4784296
    [No Abstract]   [Full Text] [Related]  

  • 30. Observations on the early development of ascending spinal pathways. Studies using the North American opossum.
    Martin GF; Culberson JL; Hazlett JC
    Anat Embryol (Berl); 1983; 166(2):191-207. PubMed ID: 6846856
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Studies on lower motor neurons and pathways to the spinal gray.
    Brain Behav Evol; 1975; 12(4-6):201-364. PubMed ID: 817780
    [No Abstract]   [Full Text] [Related]  

  • 32. The lateral reticular nucleus of the opossum (Didelphis virginiana). II. Connections.
    Martin GF; Andrezik J; Crutcher K; Linauts M; Panneton M
    J Comp Neurol; 1977 Jul; 174(1):151-86. PubMed ID: 864033
    [No Abstract]   [Full Text] [Related]  

  • 33. The development of rubrospinal, cerebellorubral, and corticorubral connections in the North American opossum. Evidence for asynchronism.
    Martin GF; Cabana T; Hazlet JC
    Neurochem Pathol; 1986 Dec; 5(3):221-36. PubMed ID: 2442682
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Some efferent cortical pathways of the opossum.
    Martin GF
    J Hirnforsch; 1968; 10(1):55-78. PubMed ID: 5639338
    [No Abstract]   [Full Text] [Related]  

  • 35. The striatum of the opossum, Didelphis virginiana. Description and experimental studies.
    Martin GF; Hamel EG
    J Comp Neurol; 1967 Dec; 131(4):491-516. PubMed ID: 5582292
    [No Abstract]   [Full Text] [Related]  

  • 36. The basilar pontine gray of the opossum (Didelphis virginiana). II. Experimental determination of neocortical input.
    Martin GF; King JS
    J Comp Neurol; 1968 Aug; 133(4):447-61. PubMed ID: 5733930
    [No Abstract]   [Full Text] [Related]  

  • 37. Brain growth and neocortical development in the opossum.
    Krause WJ; Saunders NR
    Ann Anat; 1994 Oct; 176(5):395-407. PubMed ID: 7978336
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Cortical projections to the lower brain stem and spinal cord in the tree shrew (Tupaia glis).
    Shriver JE; Noback CR
    J Comp Neurol; 1967 May; 130(1):25-54. PubMed ID: 6033024
    [No Abstract]   [Full Text] [Related]  

  • 39. The distribution of GAP-43 immunoreactivity in the central nervous system of adult opossums (Didelphis virginiana) with notes on their development.
    Zou XC; Martin GF
    Brain Behav Evol; 1995; 45(2):63-83. PubMed ID: 7749727
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Origin of mammalian thalamocortical projections. I. Telencephalic projections of the medial geniculate body in the opossum (Didelphis virginiana).
    Kudo M; Glendenning KK; Frost SB; Masterton RB
    J Comp Neurol; 1986 Mar; 245(2):176-97. PubMed ID: 2420841
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.