BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

73 related articles for article (PubMed ID: 1226425)

  • 1. beta-Hydroxy fatty acid production during fatty acid oxidation by heart mitochondria.
    Hull FE; Radloff JF; Sweeley CC
    Recent Adv Stud Cardiac Struct Metab; 1975; 7():13-21. PubMed ID: 1226425
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fatty acid oxidation by ischemic myocardium.
    Hull FE; Radloff JF; Sweeley CC
    Recent Adv Stud Cardiac Struct Metab; 1975; 8():153-65. PubMed ID: 175411
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A novel functional assay for simultaneous determination of total fatty acid beta-oxidation flux and acylcarnitine profiling in human skin fibroblasts using (2)H(31)-palmitate by isotope ratio mass spectrometry and electrospray tandem mass spectrometry.
    Law LK; Tang NL; Hui J; Ho CS; Ruiter J; Fok TF; Wanders RJ; Lam CW
    Clin Chim Acta; 2007 Jul; 382(1-2):25-30. PubMed ID: 17442290
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In obese rat muscle transport of palmitate is increased and is channeled to triacylglycerol storage despite an increase in mitochondrial palmitate oxidation.
    Holloway GP; Benton CR; Mullen KL; Yoshida Y; Snook LA; Han XX; Glatz JF; Luiken JJ; Lally J; Dyck DJ; Bonen A
    Am J Physiol Endocrinol Metab; 2009 Apr; 296(4):E738-47. PubMed ID: 19141681
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Incomplete fatty acid oxidation by ischemic heart: beta-hydroxy fatty acid production.
    Moore KH; Radloff JF; Hull FE; Sweeley CC
    Am J Physiol; 1980 Aug; 239(2):H257-65. PubMed ID: 7406063
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Gas chromatography/electron-capture negative ion mass spectrometry for the quantitative determination of 2- and 3-hydroxy fatty acids in bovine milk fat.
    Jenske R; Vetter W
    J Agric Food Chem; 2008 Jul; 56(14):5500-5. PubMed ID: 18570427
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cardiac metabolism of beta-hydroxy fatty acids.
    Hull FE; Malone M; Albers-Schönberg G
    Recent Adv Stud Cardiac Struct Metab; 1973; 3():39-52. PubMed ID: 4806662
    [No Abstract]   [Full Text] [Related]  

  • 8. [Oxidation of fatty acids in heart mitochondria of the ischemic myocardium].
    Toleĭkis AI; Bakshite LI; Prashkiavichius AK
    Vopr Med Khim; 1985; 31(6):41-6. PubMed ID: 4090385
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Regulation of fatty acid oxidation by acetyl-CoA generated from glucose utilization in isolated myocytes.
    Abdel-aleem S; Nada MA; Sayed-Ahmed M; Hendrickson SC; St Louis J; Walthall HP; Lowe JE
    J Mol Cell Cardiol; 1996 May; 28(5):825-33. PubMed ID: 8762022
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The role of acyltransferases in fatty acid utilization.
    Borrebaek B; Christiansen R; Christophersen BO; Bremer J
    Circ Res; 1976 May; 38(5 Suppl 1):I16-21. PubMed ID: 1269090
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Fatty acid oxidation in the myocardium of normal animals and in experimental myocarditis].
    Boboshko IL; Grozdova MD
    Vopr Med Khim; 1970; 16(1):87-90. PubMed ID: 5435393
    [No Abstract]   [Full Text] [Related]  

  • 12. 3-Hydroxy-fatty acid analysis by gas chromatography-mass spectrometry.
    Jones PM; Bennett MJ
    Methods Mol Biol; 2010; 603():229-43. PubMed ID: 20077074
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Skeletal muscle mitochondrial FAT/CD36 content and palmitate oxidation are not decreased in obese women.
    Holloway GP; Thrush AB; Heigenhauser GJ; Tandon NN; Dyck DJ; Bonen A; Spriet LL
    Am J Physiol Endocrinol Metab; 2007 Jun; 292(6):E1782-9. PubMed ID: 17311893
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Reasons for disorders of fatty acid oxidation in isolated heart mitochondria during ischemia].
    Balasiavichius RV; Dagis AI; Toleĭkis AI; Prashkiavichius AK
    Biull Eksp Biol Med; 1985 Mar; 99(3):294-6. PubMed ID: 3986334
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Excess lipid availability increases mitochondrial fatty acid oxidative capacity in muscle: evidence against a role for reduced fatty acid oxidation in lipid-induced insulin resistance in rodents.
    Turner N; Bruce CR; Beale SM; Hoehn KL; So T; Rolph MS; Cooney GJ
    Diabetes; 2007 Aug; 56(8):2085-92. PubMed ID: 17519422
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Endurance training in obese humans improves glucose tolerance and mitochondrial fatty acid oxidation and alters muscle lipid content.
    Bruce CR; Thrush AB; Mertz VA; Bezaire V; Chabowski A; Heigenhauser GJ; Dyck DJ
    Am J Physiol Endocrinol Metab; 2006 Jul; 291(1):E99-E107. PubMed ID: 16464906
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effect of rotenone on the regulation of fatty acid synthesis in heart mitochondria.
    Hull FE; Whereat AF
    J Biol Chem; 1967 Sep; 242(18):4023-8. PubMed ID: 4294043
    [No Abstract]   [Full Text] [Related]  

  • 18. New genetic defects in mitochondrial fatty acid oxidation and carnitine deficiency.
    Stanley CA
    Adv Pediatr; 1987; 34():59-88. PubMed ID: 3318304
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Studies on the mechanism of the inhibitory effects of erucylcarnitine in rat heart mitochondria.
    Christophersen BO; Christiansen RZ
    Biochim Biophys Acta; 1975 Jun; 388(3):402-12. PubMed ID: 1137719
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Incomplete fatty acid oxidation by heart mitochondria: beta-hydroxy fatty acid production.
    Moore KH; Radloff JF; Koen AE; Hull FE
    J Mol Cell Cardiol; 1982 Aug; 14(8):451-9. PubMed ID: 7175948
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 4.