These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
255 related articles for article (PubMed ID: 12269571)
1. Building blocks for a two-frequency laser lidar-radar: a preliminary study. Morvan L; Lai ND; Dolfi D; Huignard JP; Brunel M; Bretenaker F; Le Floch A Appl Opt; 2002 Sep; 41(27):5702-12. PubMed ID: 12269571 [TBL] [Abstract][Full Text] [Related]
2. Lidar-radar velocimetry using a pulse-to-pulse coherent rf-modulated Q-switched laser. Vallet M; Barreaux J; Romanelli M; Pillet G; Thévenin J; Wang L; Brunel M Appl Opt; 2013 Aug; 52(22):5402-10. PubMed ID: 23913058 [TBL] [Abstract][Full Text] [Related]
3. Green pulsed lidar-radar emitter based on a multipass frequency-shifting external cavity. Zhang H; Brunel M; Romanelli M; Vallet M Appl Opt; 2016 Apr; 55(10):2467-73. PubMed ID: 27139644 [TBL] [Abstract][Full Text] [Related]
4. Pulse-to-pulse coherent beat note generated by a passively Q-switched two-frequency laser. Brunel M; Vallet M Opt Lett; 2008 Nov; 33(21):2524-6. PubMed ID: 18978908 [TBL] [Abstract][Full Text] [Related]
5. Two-frequency Er-Yb:glass microchip laser passively Q switched by a Co:ASL saturable absorber. Lai ND; Brunel M; Bretenaker F; Ferrand B; Fulbert L Opt Lett; 2003 Mar; 28(5):328-30. PubMed ID: 12669696 [TBL] [Abstract][Full Text] [Related]
6. Extra-cavity radiofrequency modulator for a lidar radar designed for underwater target detection. Alem N; Pellen F; Le Brun G; Le Jeune B Appl Opt; 2017 Sep; 56(26):7367-7372. PubMed ID: 29048058 [TBL] [Abstract][Full Text] [Related]
7. Development of an amplitude-modulated Nd:YAG pulsed laser with modulation frequency tunability up to 60 GHz by dual seed injection. Kao DC; Kane TJ; Mullen LJ Opt Lett; 2004 Jun; 29(11):1203-5. PubMed ID: 15209247 [TBL] [Abstract][Full Text] [Related]
8. Ultrawideband coherent noise lidar range-Doppler imaging and signal processing by use of spatial-spectral holography in inhomogeneously broadened absorbers. Li Y; Hoskins A; Schlottau F; Wagner KH; Embry C; Babbitt WR Appl Opt; 2006 Sep; 45(25):6409-20. PubMed ID: 16912777 [TBL] [Abstract][Full Text] [Related]
9. Range-resolved optical detection of honeybees by use of wing-beat modulation of scattered light for locating land mines. Hoffman DS; Nehrir AR; Repasky KS; Shaw JA; Carlsten JL Appl Opt; 2007 May; 46(15):3007-12. PubMed ID: 17514251 [TBL] [Abstract][Full Text] [Related]
13. Frequency and timing stability of an airborne injection-seeded Nd:YAG laser system for direct-detection wind lidar. Lemmerz C; Lux O; Reitebuch O; Witschas B; Wührer C Appl Opt; 2017 Nov; 56(32):9057-9068. PubMed ID: 29131193 [TBL] [Abstract][Full Text] [Related]
14. RF intensity modulated mid-IR light source based on dual-frequency optical parametric oscillation. Li K; Yang S; Wang X; Li Z; Zhang J Opt Express; 2019 Feb; 27(4):4907-4916. PubMed ID: 30876100 [TBL] [Abstract][Full Text] [Related]
15. Delta-k-lidar sensing of the ocean surface. Palmer AJ Appl Opt; 1992 Jul; 31(21):4275-9. PubMed ID: 20725412 [TBL] [Abstract][Full Text] [Related]
16. Atmospheric CO Larsson J; Bood J; Xu CT; Yang X; Lindberg R; Laurell F; Brydegaard M Opt Express; 2019 Jun; 27(12):17348-17358. PubMed ID: 31252945 [TBL] [Abstract][Full Text] [Related]
17. Development of an eye-safe solid-state tunable laser transmitter in the 1.4-1.5 microm wavelength region based on Cr4+:YAG crystal for lidar applications. Petrova-Mayor A; Wulfmeyer V; Weibring P Appl Opt; 2008 Apr; 47(10):1522-34. PubMed ID: 18382581 [TBL] [Abstract][Full Text] [Related]