BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 12269581)

  • 1. Enhancement of the thermal lens signal induced by sample matrix absorption of the probe laser beam.
    Grishko VI; Tran CD; Duley WW
    Appl Opt; 2002 Sep; 41(27):5814-22. PubMed ID: 12269581
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sensitivity enhancement of surface thermal lens technique with a short-wavelength probe beam: experiment.
    Zhang X; Li B
    Rev Sci Instrum; 2015 Feb; 86(2):024902. PubMed ID: 25725872
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thermal lens spectrometry in aqueous solutions of Brij 35: investigation of micelle effects on the time-resolved and steady-state signals.
    Arnaud N; Georges J
    Spectrochim Acta A Mol Biomol Spectrosc; 2001 Apr; 57A(5):1085-92. PubMed ID: 11374568
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pulsed mode thermal lens effect detection in the near field via thermally induced probe beam spatial phase modulation: a theory.
    Power JF
    Appl Opt; 1990 Jan; 29(1):52-63. PubMed ID: 20556068
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Trace detection and photothermal spectral characterization by a tuneable thermal lens spectrometer with white-light excitation.
    Cabrera H; Akbar J; Korte D; Ramírez-Miquet EE; Marín E; Niemela J; Ebrahimpour Z; Mannatunga K; Franko M
    Talanta; 2018 Jun; 183():158-163. PubMed ID: 29567158
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A multi-thermal-lens approach to evaluation of multi-pass probe beam configuration in thermal lens spectrometry.
    Cabrera H; Goljat L; Korte D; Marín E; Franko M
    Anal Chim Acta; 2020 Mar; 1100():182-190. PubMed ID: 31987139
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mode-coupling enhancement by pump astigmatism correction in a Ti:Sapphire femtosecond laser.
    Ramírez-Guerra C; Moreno-Larios JA; Rosete-Aguilar M; Garduño-Mejía J
    Appl Opt; 2016 Dec; 55(34):9889-9894. PubMed ID: 27958484
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Linear and Nonlinear Thermal Lens Signal of the (Δν = 6) C-H Vibrational Overtone of Naphthalene in Liquid Solutions of n-Hexane.
    Nyaupane PR; Diaz M; Barton A; Manzanares CE
    Appl Spectrosc; 2019 Dec; 73(12):1380-1387. PubMed ID: 29473422
    [TBL] [Abstract][Full Text] [Related]  

  • 9. End-pumped Nd:YVO
    Lin D; Andrew Clarkson W
    Opt Lett; 2017 Aug; 42(15):2910-2913. PubMed ID: 28957205
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Signal optimisation in cw-laser crossed-beam photothermal spectrometry: influence of the chopping frequency, sample size and flow rate.
    Abbas Ghaleb K; Georges J
    Spectrochim Acta A Mol Biomol Spectrosc; 2005 Oct; 61(13-14):2849-55. PubMed ID: 16165023
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thermal-Lens-Induced Anomalous Solvent's effect on Fluorescence Produced by Two-Photon Continuous-Wave Laser Excitation.
    Fischer M; Tran CD
    Appl Opt; 2000 Nov; 39(33):6257-62. PubMed ID: 18354634
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Differential Thermal Lens Spectrometry Method for Trace Detection.
    Cedeño E; Zuleta R; Mejorada Sánchez JL; Alvarado S; Marín E
    Appl Spectrosc; 2024 Jun; 78(6):644-649. PubMed ID: 38378011
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Magnification in excess of 100-times of the microscopic photothermal lensing signal from solute molecules by two-color excitation with continuous-wave lasers.
    Harata A; Fukushima K; Hatano Y
    Anal Sci; 2002 Dec; 18(12):1367-73. PubMed ID: 12502091
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High sensitivity thermal lens microscopy: Cr-VI trace detection in water.
    Cedeño E; Cabrera H; Delgadillo-López AE; Delgado-Vasallo O; Mansanares AM; Calderón A; Marín E
    Talanta; 2017 Aug; 170():260-265. PubMed ID: 28501168
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Very low optical absorptions and analyte concentrations in water measured by Optimized Thermal Lens Spectrometry.
    Cruz RA; Filadelpho MC; Castro MP; Andrade AA; Souza CM; Catunda T
    Talanta; 2011 Aug; 85(2):850-8. PubMed ID: 21726709
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mode-mismatched confocal thermal-lens microscope with collimated probe beam.
    Cabrera H; Korte D; Franko M
    Rev Sci Instrum; 2015 May; 86(5):053701. PubMed ID: 26026526
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Time-resolved thermal lens spectroscopy with a single-pulsed laser excitation beam: an analytical model for dual-beam mode-mismatched experiments.
    Sabaeian M; Rezaei H; Ghalambor-Dezfouli A
    Appl Opt; 2017 Feb; 56(4):999-1005. PubMed ID: 28158105
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cw-laser thermal lens spectrometry in binary mixtures of water and organic solvents: composition dependence of the steady-state and time-resolved signals.
    Arnaud N; Georges J
    Spectrochim Acta A Mol Biomol Spectrosc; 2004 Jul; 60(8-9):1817-23. PubMed ID: 15248955
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optofluidic tunable lenses using laser-induced thermal gradient.
    Chen Q; Jian A; Li Z; Zhang X
    Lab Chip; 2016 Jan; 16(1):104-11. PubMed ID: 26584422
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Investigation of the optimum optical design for pulsed-laser crossed-beam thermal lens spectrometry in infinite and finite samples.
    Abbas Ghaleb K; Georges J
    Spectrochim Acta A Mol Biomol Spectrosc; 2004 Mar; 60(4):863-72. PubMed ID: 15036097
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.