BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

505 related articles for article (PubMed ID: 12269637)

  • 1. Voice source characteristics in Mongolian "throat singing" studied with high-speed imaging technique, acoustic spectra, and inverse filtering.
    Lindestad PA; Södersten M; Merker B; Granqvist S
    J Voice; 2001 Mar; 15(1):78-85. PubMed ID: 12269637
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ventricular fold vibration in voice production: a high-speed imaging study with kymographic, acoustic and perceptual analyses of a voice patient and a vocally healthy subject.
    Lindestad PA; Blixt V; Pahlberg-Olsson J; Hammarberg B
    Logoped Phoniatr Vocol; 2004; 29(4):162-70. PubMed ID: 15764210
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Vocal fold vibration and voice source aperiodicity in 'dist' tones: a study of a timbral ornament in rock singing.
    Borch DZ; Sundberg J; Lindestad PA; Thalén M
    Logoped Phoniatr Vocol; 2004; 29(4):147-53. PubMed ID: 15764208
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Vocal fold and ventricular fold vibration in period-doubling phonation: physiological description and aerodynamic modeling.
    Bailly L; Henrich N; Pelorson X
    J Acoust Soc Am; 2010 May; 127(5):3212-22. PubMed ID: 21117769
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Vocal fold vibrations: high-speed imaging, kymography, and acoustic analysis: a preliminary report.
    Larsson H; Hertegård S; Lindestad PA; Hammarberg B
    Laryngoscope; 2000 Dec; 110(12):2117-22. PubMed ID: 11129033
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Soft phonation in the male singing voice: a preliminary study.
    Miller DG; Schutte HK; Doing J
    J Voice; 2001 Dec; 15(4):483-91. PubMed ID: 11792024
    [TBL] [Abstract][Full Text] [Related]  

  • 7. What can vortices tell us about vocal fold vibration and voice production.
    Khosla S; Murugappan S; Gutmark E
    Curr Opin Otolaryngol Head Neck Surg; 2008 Jun; 16(3):183-7. PubMed ID: 18475068
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Glottography, the electrophysiological investigation of phonatory biomechanics.
    Kitzing P
    Acta Otorhinolaryngol Belg; 1986; 40(6):863-78. PubMed ID: 3551483
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Freddie Mercury-acoustic analysis of speaking fundamental frequency, vibrato, and subharmonics.
    Herbst CT; Hertegard S; Zangger-Borch D; Lindestad PÅ
    Logoped Phoniatr Vocol; 2017 Apr; 42(1):29-38. PubMed ID: 27079680
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Vocal fold vibration patterns and modes of phonation.
    Sundberg J
    Folia Phoniatr Logop; 1995; 47(4):218-28. PubMed ID: 7670555
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Deviant vocal fold vibration as observed during videokymography: the effect on voice quality.
    Verdonck-de Leeuw IM; Festen JM; Mahieu HF
    J Voice; 2001 Sep; 15(3):313-22. PubMed ID: 11575628
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Investigation of four distinct glottal configurations in classical singing--a pilot study.
    Herbst CT; Ternström S; Svec JG
    J Acoust Soc Am; 2009 Mar; 125(3):EL104-9. PubMed ID: 19275279
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of HearFones on speaking and singing voice quality.
    Laukkanen AM; Mickelson NP; Laitala M; Syrjä T; Salo A; Sihvo M
    J Voice; 2004 Dec; 18(4):475-87. PubMed ID: 15567049
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ventricular-fold dynamics in human phonation.
    Bailly L; Bernardoni NH; Müller F; Rohlfs AK; Hess M
    J Speech Lang Hear Res; 2014 Aug; 57(4):1219-42. PubMed ID: 24687091
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Physiological Basis of Chinese Höömii Generation.
    Li G; Hou Q
    J Voice; 2017 Jan; 31(1):116.e13-116.e16. PubMed ID: 27130324
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The pitch rise paradigm: a new task for real-time endoscopy of non-stationary phonation.
    Rasp O; Lohscheller J; Doellinger M; Eysholdt U; Hoppe U
    Folia Phoniatr Logop; 2006; 58(3):175-85. PubMed ID: 16636565
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Flow-structure-acoustic interaction in a human voice model.
    Becker S; Kniesburges S; Müller S; Delgado A; Link G; Kaltenbacher M; Döllinger M
    J Acoust Soc Am; 2009 Mar; 125(3):1351-61. PubMed ID: 19275292
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The "Overdrive" Mode in the "Complete Vocal Technique": A Preliminary Study.
    Sundberg J; Bitelli M; Holmberg A; Laaksonen V
    J Voice; 2017 Sep; 31(5):528-535. PubMed ID: 28347616
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Automated tracking of quantitative parameters from single line scanning of vocal folds: a case study of the 'messa di voce' exercise.
    Dejonckere PH; Lebacq J; Bocchi L; Orlandi S; Manfredi C
    Logoped Phoniatr Vocol; 2015 Apr; 40(1):44-54. PubMed ID: 24456119
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Experimental analysis of the characteristics of artificial vocal folds.
    Misun V; Svancara P; Vasek M
    J Voice; 2011 May; 25(3):308-18. PubMed ID: 20359864
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 26.