These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 12269670)

  • 1. Evaluation of artificial neural networks for fine particulate pollution (PM10 and PM2.5) forecasting.
    McKendry IG
    J Air Waste Manag Assoc; 2002 Sep; 52(9):1096-101. PubMed ID: 12269670
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Prediction of ambient PM10 and toxic metals using artificial neural networks.
    Chelani AB; Gajghate DG; Hasan MZ
    J Air Waste Manag Assoc; 2002 Jul; 52(7):805-10. PubMed ID: 12139345
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluation of a multiple regression model for the forecasting of the concentrations of NOx and PM10 in Athens and Helsinki.
    Vlachogianni A; Kassomenos P; Karppinen A; Karakitsios S; Kukkonen J
    Sci Total Environ; 2011 Mar; 409(8):1559-71. PubMed ID: 21277004
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Particulate matter pollution in Chinese cities: Areal-temporal variations and their relationships with meteorological conditions (2015-2017).
    Li X; Song H; Zhai S; Lu S; Kong Y; Xia H; Zhao H
    Environ Pollut; 2019 Mar; 246():11-18. PubMed ID: 30529935
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evaluating the predictability of PM
    Hur SK; Oh HR; Ho CH; Kim J; Song CK; Chang LS; Lee JB
    Environ Pollut; 2016 Nov; 218():1324-1333. PubMed ID: 27613320
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Relationships between meteorological parameters and criteria air pollutants in three megacities in China.
    Zhang H; Wang Y; Hu J; Ying Q; Hu XM
    Environ Res; 2015 Jul; 140():242-54. PubMed ID: 25880606
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Artificial neural network models for prediction of daily fine particulate matter concentrations in Algiers.
    Chellali MR; Abderrahim H; Hamou A; Nebatti A; Janovec J
    Environ Sci Pollut Res Int; 2016 Jul; 23(14):14008-17. PubMed ID: 27040548
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Model for forecasting expressway fine particulate matter and carbon monoxide concentration: application of regression and neural network models.
    Thomas S; Jacko RB
    J Air Waste Manag Assoc; 2007 Apr; 57(4):480-8. PubMed ID: 17458467
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Assessing the impact of PM
    Polezer G; Tadano YS; Siqueira HV; Godoi AFL; Yamamoto CI; de André PA; Pauliquevis T; Andrade MF; Oliveira A; Saldiva PHN; Taylor PE; Godoi RHM
    Environ Pollut; 2018 Apr; 235():394-403. PubMed ID: 29306807
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Temporal and spatial distribution of PM2.5 and PM10 pollution status and the correlation of particulate matters and meteorological factors during winter and spring in Beijing].
    Zhao CX; Wang YQ; Wang YJ; Zhang HL; Zhao BQ
    Huan Jing Ke Xue; 2014 Feb; 35(2):418-27. PubMed ID: 24812928
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Forecasting PM10 in Algiers: efficacy of multilayer perceptron networks.
    Abderrahim H; Chellali MR; Hamou A
    Environ Sci Pollut Res Int; 2016 Jan; 23(2):1634-41. PubMed ID: 26381787
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Intercomparison of air quality data using principal component analysis, and forecasting of PM₁₀ and PM₂.₅ concentrations using artificial neural networks, in Thessaloniki and Helsinki.
    Voukantsis D; Karatzas K; Kukkonen J; Räsänen T; Karppinen A; Kolehmainen M
    Sci Total Environ; 2011 Mar; 409(7):1266-76. PubMed ID: 21276603
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Application of artificial neural networks on the prediction of surface ozone concentrations].
    Shen LL; Wang YX; Duan L
    Huan Jing Ke Xue; 2011 Aug; 32(8):2231-5. PubMed ID: 22619942
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Unveiling tropospheric ozone by the traditional atmospheric model and machine learning, and their comparison:A case study in hangzhou, China.
    Feng R; Zheng HJ; Zhang AR; Huang C; Gao H; Ma YC
    Environ Pollut; 2019 Sep; 252(Pt A):366-378. PubMed ID: 31158665
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Improving artificial neural network model predictions of daily average PM10 concentrations by applying principle component analysis and implementing seasonal models.
    Taşpınar F
    J Air Waste Manag Assoc; 2015 Jul; 65(7):800-9. PubMed ID: 26079553
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Combining machine learning models through multiple data division methods for PM
    Ren M; Sun W; Chen S
    Environ Monit Assess; 2021 Jul; 193(8):476. PubMed ID: 34232403
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development of a stacked ensemble model for forecasting and analyzing daily average PM
    Zhai B; Chen J
    Sci Total Environ; 2018 Sep; 635():644-658. PubMed ID: 29679837
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Neural network and multiple regression models for PM10 prediction in Athens: a comparative assessment.
    Chaloulakou A; Grivas G; Spyrellis N
    J Air Waste Manag Assoc; 2003 Oct; 53(10):1183-90. PubMed ID: 14604327
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Using improved neural network model to analyze RSP, NOx and NO2 levels in urban air in Mong Kok, Hong Kong.
    Lu WZ; Wang WJ; Wang XK; Xu ZB; Leung AY
    Environ Monit Assess; 2003 Sep; 87(3):235-54. PubMed ID: 12952354
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Prediction of size-fractionated airborne particle-bound metals using MLR, BP-ANN and SVM analyses.
    Leng X; Wang J; Ji H; Wang Q; Li H; Qian X; Li F; Yang M
    Chemosphere; 2017 Aug; 180():513-522. PubMed ID: 28431389
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.