BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 12269750)

  • 1. Field demonstrations of a direct push FO-LIBS metal sensor.
    Mosier-Boss PA; Lieberman SH; Theriault GA
    Environ Sci Technol; 2002 Sep; 36(18):3968-76. PubMed ID: 12269750
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rapid detection of soils contaminated with heavy metals and oils by laser induced breakdown spectroscopy (LIBS).
    Kim G; Kwak J; Kim KR; Lee H; Kim KW; Yang H; Park K
    J Hazard Mater; 2013 Dec; 263 Pt 2():754-60. PubMed ID: 24231316
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Heavy metal concentrations in soils as determined by laser-induced breakdown spectroscopy (LIBS), with special emphasis on chromium.
    Senesi GS; Dell'Aglio M; Gaudiuso R; De Giacomo A; Zaccone C; De Pascale O; Miano TM; Capitelli M
    Environ Res; 2009 May; 109(4):413-20. PubMed ID: 19272593
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Monitoring of Cr, Cu, Pb, V and Zn in polluted soils by laser induced breakdown spectroscopy (LIBS).
    Dell'Aglio M; Gaudiuso R; Senesi GS; De Giacomo A; Zaccone C; Miano TM; De Pascale O
    J Environ Monit; 2011 May; 13(5):1422-6. PubMed ID: 21416069
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Measuring total soil carbon with laser-induced breakdown spectroscopy (LIBS).
    Cremers DA; Ebinger MH; Breshears DD; Unkefer PJ; Kammerdiener SA; Ferris MJ; Catlett KM; Brown JR
    J Environ Qual; 2001; 30(6):2202-6. PubMed ID: 11790033
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Estimation of the Fe and Cu Contents of the Surface Water in the Ebinur Lake Basin Based on LIBS and a Machine Learning Algorithm.
    Zhang X; Zhang F; Kung HT; Shi P; Yushanjiang A; Zhu S
    Int J Environ Res Public Health; 2018 Oct; 15(11):. PubMed ID: 30373313
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Monitoring of heavy metal particle emission in the exhaust duct of a foundry using LIBS.
    Dutouquet C; Gallou G; Le Bihan O; Sirven JB; Dermigny A; Torralba B; Frejafon E
    Talanta; 2014 Sep; 127():75-81. PubMed ID: 24913859
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Application of a fiber-optic NIR-EFA sensor system for in situ monitoring of aromatic hydrocarbons in contaminated groundwater.
    Buerck J; Roth S; Kraemer K; Scholz M; Klaas N
    J Hazard Mater; 2001 May; 83(1-2):11-28. PubMed ID: 11267742
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Detection of lead derived from automotive scrap residue using a direct push fiber-optic laser-induced breakdown spectroscopy metal sensor.
    Mosier-Boss PA; Lieberman SH
    Appl Spectrosc; 2005 Dec; 59(12):1445-56. PubMed ID: 16390582
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Total Phosphorus Determination in Soils Using Laser-Induced Breakdown Spectroscopy: Evaluating Different Sources of Matrix Effects.
    Sánchez-Esteva S; Knadel M; Labouriau R; Rubæk GH; Heckrath G
    Appl Spectrosc; 2021 Jan; 75(1):22-33. PubMed ID: 32716204
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spatial characterization and prioritization of heavy metal contaminated soil-water resources in peri-urban areas of National Capital Territory (NCT), Delhi.
    Kaur R; Rani R
    Environ Monit Assess; 2006 Dec; 123(1-3):233-47. PubMed ID: 16763736
    [TBL] [Abstract][Full Text] [Related]  

  • 12. DGT use in contaminated site characterization. The importance of heavy metal site specific behaviour.
    Ruello ML; Sileno M; Sani D; Fava G
    Chemosphere; 2008 Jan; 70(6):1135-40. PubMed ID: 17904196
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Field reconnaissance and estimation of petroleum hydrocarbon and heavy metal contents of soils affected by the Ebocha-8 oil spillage in Niger Delta, Nigeria.
    Osuji LC; Onojake CM
    J Environ Manage; 2006 Apr; 79(2):133-9. PubMed ID: 16171935
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Can field portable X-ray fluorescence (pXRF) produce high quality data for application in environmental contamination research?
    Rouillon M; Taylor MP
    Environ Pollut; 2016 Jul; 214():255-264. PubMed ID: 27100216
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Assessment of field portable X-ray fluorescence spectrometry for the in situ determination of heavy metals in soils and plants.
    Gutiérrez-Ginés MJ; Pastor J; Hernández AJ
    Environ Sci Process Impacts; 2013 Aug; 15(8):1545-52. PubMed ID: 23793270
    [TBL] [Abstract][Full Text] [Related]  

  • 16. On-line monitoring of remediation process of chromium polluted soil using LIBS.
    Gondal MA; Hussain T; Yamani ZH; Baig MA
    J Hazard Mater; 2009 Apr; 163(2-3):1265-71. PubMed ID: 18809249
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Spatiotemporal variation characteristics of heavy metals pollution in the water, soil and sediments environment of the Lean River-Poyang Lake Wetland].
    Jian MF; Li LY; Xu PF; Chen PQ; Xiong JQ; Zhou XL
    Huan Jing Ke Xue; 2014 May; 35(5):1759-65. PubMed ID: 25055663
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Magnetic susceptibility measurements as proxy method to monitor soil pollution: development of experimental protocols for field surveys.
    D'Emilio M; Chianese D; Coppola R; Macchiato M; Ragosta M
    Environ Monit Assess; 2007 Feb; 125(1-3):137-46. PubMed ID: 17058014
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Application of a mobile laser-induced breakdown spectroscopy system to detect heavy metal elements in soil.
    Meng D; Zhao N; Ma M; Fang L; Gu Y; Jia Y; Liu J; Liu W
    Appl Opt; 2017 Jun; 56(18):5204-5210. PubMed ID: 29047571
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Determination of lead in soil at a historical mining and smelting site using laser-induced breakdown spectroscopy.
    Kwak J; Kim KW; Park M; Kim J; Park K
    Environ Technol; 2012 Sep; 33(16-18):2177-84. PubMed ID: 23240213
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.