These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

273 related articles for article (PubMed ID: 12269809)

  • 21. A theoretical analysis on characteristics of protein structures induced by cold denaturation.
    Oshima H; Yoshidome T; Amano K; Kinoshita M
    J Chem Phys; 2009 Nov; 131(20):205102. PubMed ID: 19947708
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Differential Effects of Hydrophobic Core Packing Residues for Thermodynamic and Mechanical Stability of a Hyperthermophilic Protein.
    Tych KM; Batchelor M; Hoffmann T; Wilson MC; Hughes ML; Paci E; Brockwell DJ; Dougan L
    Langmuir; 2016 Jul; 32(29):7392-402. PubMed ID: 27338140
    [TBL] [Abstract][Full Text] [Related]  

  • 23. An electrostatic basis for the stability of thermophilic proteins.
    Dominy BN; Minoux H; Brooks CL
    Proteins; 2004 Oct; 57(1):128-41. PubMed ID: 15326599
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Measurement of the kinetics of protein unfolding in viscous systems and implications for protein stability in freeze-drying.
    Tang XC; Pikal MJ
    Pharm Res; 2005 Jul; 22(7):1176-85. PubMed ID: 16028019
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The conformational stability of the Streptomyces coelicolor histidine-phosphocarrier protein. Characterization of cold denaturation and urea-protein interactions.
    Neira JL; Gómez J
    Eur J Biochem; 2004 Jun; 271(11):2165-81. PubMed ID: 15153107
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Maltose-binding protein from the hyperthermophilic bacterium Thermotoga maritima: stability and binding properties.
    Wassenberg D; Liebl W; Jaenicke R
    J Mol Biol; 2000 Jan; 295(2):279-88. PubMed ID: 10623526
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Folding dynamics of the src SH3 domain.
    Grantcharova VP; Baker D
    Biochemistry; 1997 Dec; 36(50):15685-92. PubMed ID: 9398297
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Microsecond folding of the cold shock protein measured by a pressure-jump technique.
    Jacob M; Holtermann G; Perl D; Reinstein J; Schindler T; Geeves MA; Schmid FX
    Biochemistry; 1999 Mar; 38(10):2882-91. PubMed ID: 10074340
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Thermodynamic analysis of the unfolding and stability of the dimeric DNA-binding protein HU from the hyperthermophilic eubacterium Thermotoga maritima and its E34D mutant.
    Ruiz-Sanz J; Filimonov VV; Christodoulou E; Vorgias CE; Mateo PL
    Eur J Biochem; 2004 Apr; 271(8):1497-507. PubMed ID: 15066175
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Temperature dependence of the folding and unfolding kinetics of the GCN4 leucine zipper via 13C(alpha)-NMR.
    Holtzer ME; Bretthorst GL; d'Avignon DA; Angeletti RH; Mints L; Holtzer A
    Biophys J; 2001 Feb; 80(2):939-51. PubMed ID: 11159461
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A suite of
    Overbeck JH; Kremer W; Sprangers R
    J Biomol NMR; 2020 Dec; 74(12):753-766. PubMed ID: 32997265
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The entropic nature of protein thermal stabilization.
    Khechinashvili NN; Capital Ka Cyrillicabanov AV; Kondratyev MS; Polozov RV
    J Biomol Struct Dyn; 2014; 32(9):1396-405. PubMed ID: 23879480
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Probing the free-energy surface for protein folding with single-molecule fluorescence spectroscopy.
    Schuler B; Lipman EA; Eaton WA
    Nature; 2002 Oct; 419(6908):743-7. PubMed ID: 12384704
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Protein stabilization by osmolytes from hyperthermophiles: effect of mannosylglycerate on the thermal unfolding of recombinant nuclease a from Staphylococcus aureus studied by picosecond time-resolved fluorescence and calorimetry.
    Faria TQ; Lima JC; Bastos M; Maçanita AL; Santos H
    J Biol Chem; 2004 Nov; 279(47):48680-91. PubMed ID: 15347691
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Cooperative unfolding of apolipoprotein A-1 induced by chemical denaturation.
    Eckhardt D; Li-Blatter X; Schönfeld HJ; Heerklotz H; Seelig J
    Biophys Chem; 2018 Sep; 240():42-49. PubMed ID: 29885564
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Observation of multistate kinetics during the slow folding and unfolding of barstar.
    Bhuyan AK; Udgaonkar JB
    Biochemistry; 1999 Jul; 38(28):9158-68. PubMed ID: 10413490
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Mechanism of thermostabilization in a designed cold shock protein with optimized surface electrostatic interactions.
    Makhatadze GI; Loladze VV; Gribenko AV; Lopez MM
    J Mol Biol; 2004 Feb; 336(4):929-42. PubMed ID: 15095870
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The inverted chevron plot measured by NMR relaxation reveals a native-like unfolding intermediate in acyl-CoA binding protein.
    Teilum K; Poulsen FM; Akke M
    Proc Natl Acad Sci U S A; 2006 May; 103(18):6877-82. PubMed ID: 16641108
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Construction and characterization of monomeric tryptophan repressor: a model for an early intermediate in the folding of a dimeric protein.
    Shao X; Hensley P; Matthews CR
    Biochemistry; 1997 Aug; 36(32):9941-9. PubMed ID: 9245428
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Thermodynamics of denaturation of barstar: evidence for cold denaturation and evaluation of the interaction with guanidine hydrochloride.
    Agashe VR; Udgaonkar JB
    Biochemistry; 1995 Mar; 34(10):3286-99. PubMed ID: 7880824
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.