These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
425 related articles for article (PubMed ID: 12269837)
1. Preassembly of membrane-active peptides is an important factor in their selectivity toward target cells. Sal-Man N; Oren Z; Shai Y Biochemistry; 2002 Oct; 41(39):11921-30. PubMed ID: 12269837 [TBL] [Abstract][Full Text] [Related]
2. Bestowing antifungal and antibacterial activities by lipophilic acid conjugation to D,L-amino acid-containing antimicrobial peptides: a plausible mode of action. Avrahami D; Shai Y Biochemistry; 2003 Dec; 42(50):14946-56. PubMed ID: 14674771 [TBL] [Abstract][Full Text] [Related]
3. Conjugation of a magainin analogue with lipophilic acids controls hydrophobicity, solution assembly, and cell selectivity. Avrahami D; Shai Y Biochemistry; 2002 Feb; 41(7):2254-63. PubMed ID: 11841217 [TBL] [Abstract][Full Text] [Related]
4. Effect of multiple aliphatic amino acids substitutions on the structure, function, and mode of action of diastereomeric membrane active peptides. Avrahami D; Oren Z; Shai Y Biochemistry; 2001 Oct; 40(42):12591-603. PubMed ID: 11601983 [TBL] [Abstract][Full Text] [Related]
5. Cyclization of a cytolytic amphipathic alpha-helical peptide and its diastereomer: effect on structure, interaction with model membranes, and biological function. Oren Z; Shai Y Biochemistry; 2000 May; 39(20):6103-14. PubMed ID: 10821683 [TBL] [Abstract][Full Text] [Related]
6. A comparative study on the structure and function of a cytolytic alpha-helical peptide and its antimicrobial beta-sheet diastereomer. Oren Z; Hong J; Shai Y Eur J Biochem; 1999 Jan; 259(1-2):360-9. PubMed ID: 9914515 [TBL] [Abstract][Full Text] [Related]
7. Structure and organization of hemolytic and nonhemolytic diastereomers of antimicrobial peptides in membranes. Hong J; Oren Z; Shai Y Biochemistry; 1999 Dec; 38(51):16963-73. PubMed ID: 10606532 [TBL] [Abstract][Full Text] [Related]
8. Conjugation of fatty acids with different lengths modulates the antibacterial and antifungal activity of a cationic biologically inactive peptide. Malina A; Shai Y Biochem J; 2005 Sep; 390(Pt 3):695-702. PubMed ID: 15907192 [TBL] [Abstract][Full Text] [Related]
9. Molecular basis for membrane selectivity of NK-2, a potent peptide antibiotic derived from NK-lysin. Schröder-Borm H; Willumeit R; Brandenburg K; Andrä J Biochim Biophys Acta; 2003 Jun; 1612(2):164-71. PubMed ID: 12787934 [TBL] [Abstract][Full Text] [Related]
10. Bacteria May Cope Differently from Similar Membrane Damage Caused by the Australian Tree Frog Antimicrobial Peptide Maculatin 1.1. Sani MA; Henriques ST; Weber D; Separovic F J Biol Chem; 2015 Aug; 290(32):19853-62. PubMed ID: 26100634 [TBL] [Abstract][Full Text] [Related]
11. Effect of drastic sequence alteration and D-amino acid incorporation on the membrane binding behavior of lytic peptides. Papo N; Shai Y Biochemistry; 2004 Jun; 43(21):6393-403. PubMed ID: 15157073 [TBL] [Abstract][Full Text] [Related]
12. Mechanism of action and specificity of antimicrobial peptides designed based on buforin IIb. Jang SA; Kim H; Lee JY; Shin JR; Kim DJ; Cho JH; Kim SC Peptides; 2012 Apr; 34(2):283-9. PubMed ID: 22306477 [TBL] [Abstract][Full Text] [Related]
13. Selective toxicity of antimicrobial peptide S-thanatin on bacteria. Wu G; Wu H; Fan X; Zhao R; Li X; Wang S; Ma Y; Shen Z; Xi T Peptides; 2010 Sep; 31(9):1669-73. PubMed ID: 20600431 [TBL] [Abstract][Full Text] [Related]
14. Membrane disruptive antimicrobial activities of human β-defensin-3 analogs. Sudheendra US; Dhople V; Datta A; Kar RK; Shelburne CE; Bhunia A; Ramamoorthy A Eur J Med Chem; 2015 Feb; 91():91-9. PubMed ID: 25112689 [TBL] [Abstract][Full Text] [Related]
15. Contribution of a central proline in model amphipathic alpha-helical peptides to self-association, interaction with phospholipids, and antimicrobial mode of action. Yang ST; Lee JY; Kim HJ; Eu YJ; Shin SY; Hahm KS; Kim JI FEBS J; 2006 Sep; 273(17):4040-54. PubMed ID: 16889633 [TBL] [Abstract][Full Text] [Related]
16. Branched phospholipids render lipid vesicles more susceptible to membrane-active peptides. Mitchell NJ; Seaton P; Pokorny A Biochim Biophys Acta; 2016 May; 1858(5):988-94. PubMed ID: 26514602 [TBL] [Abstract][Full Text] [Related]
17. Lipid selectivity in novel antimicrobial peptides: Implication on antimicrobial and hemolytic activity. Maturana P; Martinez M; Noguera ME; Santos NC; Disalvo EA; Semorile L; Maffia PC; Hollmann A Colloids Surf B Biointerfaces; 2017 May; 153():152-159. PubMed ID: 28236791 [TBL] [Abstract][Full Text] [Related]
18. Immobilization reduces the activity of surface-bound cationic antimicrobial peptides with no influence upon the activity spectrum. Bagheri M; Beyermann M; Dathe M Antimicrob Agents Chemother; 2009 Mar; 53(3):1132-41. PubMed ID: 19104020 [TBL] [Abstract][Full Text] [Related]
19. Peptide hydrophobicity controls the activity and selectivity of magainin 2 amide in interaction with membranes. Wieprecht T; Dathe M; Beyermann M; Krause E; Maloy WL; MacDonald DL; Bienert M Biochemistry; 1997 May; 36(20):6124-32. PubMed ID: 9166783 [TBL] [Abstract][Full Text] [Related]
20. Antimicrobial activities and action mechanism studies of transportan 10 and its analogues against multidrug-resistant bacteria. Xie J; Gou Y; Zhao Q; Li S; Zhang W; Song J; Mou L; Li J; Wang K; Zhang B; Yang W; Wang R J Pept Sci; 2015 Jul; 21(7):599-607. PubMed ID: 25891396 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]