These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
118 related articles for article (PubMed ID: 12270201)
1. Concept of sequential analysis of free and conjugated phytosterols in different plant matrices. Breinhölder P; Mosca L; Lindner W J Chromatogr B Analyt Technol Biomed Life Sci; 2002 Sep; 777(1-2):67-82. PubMed ID: 12270201 [TBL] [Abstract][Full Text] [Related]
2. Phytosterol composition of nuts and seeds commonly consumed in the United States. Phillips KM; Ruggio DM; Ashraf-Khorassani M J Agric Food Chem; 2005 Nov; 53(24):9436-45. PubMed ID: 16302759 [TBL] [Abstract][Full Text] [Related]
3. Variations in phytosterol composition during the ripening of Tunisian safflower (Carthamus tinctorius L.) seeds. Hamrouni-Sellami I; Salah HB; Kchouk ME; Marzouk B Pak J Biol Sci; 2007 Nov; 10(21):3829-34. PubMed ID: 19090237 [TBL] [Abstract][Full Text] [Related]
4. Determination of sterol lipids in plant tissues by gas chromatography and Q-TOF mass spectrometry. Wewer V; Dörmann P Methods Mol Biol; 2014; 1153():115-33. PubMed ID: 24777793 [TBL] [Abstract][Full Text] [Related]
5. Characterization and determination of free phytosterols and phytosterol conjugates: The potential phytochemicals to classify different rice bran oil and rice bran. Zhang J; Zhang T; Tao G; Liu R; Chang M; Jin Q; Wang X Food Chem; 2021 May; 344():128624. PubMed ID: 33248841 [TBL] [Abstract][Full Text] [Related]
6. Optimization of the silica-gel adsorption technique for the extraction of phytosterol glycosides from soybean lecithin powder using response surface methodology and artificial neural network models. Kang J; Cao D J Food Sci; 2020 Jul; 85(7):1971-1982. PubMed ID: 32529719 [TBL] [Abstract][Full Text] [Related]
7. Direct saponification preparation and analysis of free and conjugated phytosterols in sugarcane (Saccharum officinarum L.) by reversed-phase high-performance liquid chromatography. Feng S; Liu S; Luo Z; Tang K Food Chem; 2015 Aug; 181():9-14. PubMed ID: 25794713 [TBL] [Abstract][Full Text] [Related]
8. Phytosterol, squalene, tocopherol content and fatty acid profile of selected seeds, grains, and legumes. Ryan E; Galvin K; O'Connor TP; Maguire AR; O'Brien NM Plant Foods Hum Nutr; 2007 Sep; 62(3):85-91. PubMed ID: 17594521 [TBL] [Abstract][Full Text] [Related]
9. Analysis of Free and Esterified Sterol Content and Composition in Seeds Using GC and ESI-MS/MS. Broughton R; Beaudoin F Methods Mol Biol; 2021; 2295():179-201. PubMed ID: 34047978 [TBL] [Abstract][Full Text] [Related]
10. Evaluation system construction and factor impact analysis of silica-gel adsorption to extract phytosterol glycosides from soybean lecithin powder. Kang J; Che Y; Yan N; Cao D J Sci Food Agric; 2019 Jul; 99(9):4287-4295. PubMed ID: 30828812 [TBL] [Abstract][Full Text] [Related]
11. Enzymatic hydrolysis of steryl glycosides for their analysis in foods. Münger LH; Nyström L Food Chem; 2014 Nov; 163():202-11. PubMed ID: 24912717 [TBL] [Abstract][Full Text] [Related]
12. Gas chromatographic separation of fatty acid esters of cholesterol and phytosterols on an ionic liquid capillary column. Hammann S; Vetter W J Chromatogr B Analyt Technol Biomed Life Sci; 2015 Dec; 1007():67-71. PubMed ID: 26590877 [TBL] [Abstract][Full Text] [Related]
13. Fully automated determination of the sterol composition and total content in edible oils and fats by online liquid chromatography-gas chromatography-flame ionization detection. Nestola M; Schmidt TC J Chromatogr A; 2016 Sep; 1463():136-43. PubMed ID: 27522150 [TBL] [Abstract][Full Text] [Related]
14. Commercial peanut (Arachis hypogaea L.) cultivars in the United States: phytosterol composition. Shin EC; Pegg RB; Phillips RD; Eitenmiller RR J Agric Food Chem; 2010 Aug; 58(16):9137-46. PubMed ID: 20677801 [TBL] [Abstract][Full Text] [Related]
15. Ripening, storage temperature, ethylene action, and oxidative stress alter apple peel phytosterol metabolism. Rudell DR; Buchanan DA; Leisso RS; Whitaker BD; Mattheis JP; Zhu Y; Varanasi V Phytochemistry; 2011 Aug; 72(11-12):1328-40. PubMed ID: 21665233 [TBL] [Abstract][Full Text] [Related]
16. Glycosidic bond cleavage is not required for phytosteryl glycoside-induced reduction of cholesterol absorption in mice. Lin X; Ma L; Moreau RA; Ostlund RE Lipids; 2011 Aug; 46(8):701-8. PubMed ID: 21538209 [TBL] [Abstract][Full Text] [Related]
17. Steryl glucoside and acyl steryl glucoside analysis of Arabidopsis seeds by electrospray ionization tandem mass spectrometry. Schrick K; Shiva S; Arpin JC; Delimont N; Isaac G; Tamura P; Welti R Lipids; 2012 Feb; 47(2):185-93. PubMed ID: 21830156 [TBL] [Abstract][Full Text] [Related]
18. A highly sensitive quantification of phytosterols through an inexpensive derivatization. Liu S; Ruan H Chem Phys Lipids; 2013 Jan; 166():18-25. PubMed ID: 23261797 [TBL] [Abstract][Full Text] [Related]
19. Quantification of sterol lipids in plants by quadrupole time-of-flight mass spectrometry. Wewer V; Dombrink I; vom Dorp K; Dörmann P J Lipid Res; 2011 May; 52(5):1039-54. PubMed ID: 21382968 [TBL] [Abstract][Full Text] [Related]
20. A single extraction and HPLC procedure for simultaneous analysis of phytosterols, tocopherols and lutein in soybeans. Slavin M; Yu LL Food Chem; 2012 Dec; 135(4):2789-95. PubMed ID: 22980873 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]