These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
170 related articles for article (PubMed ID: 12270608)
1. The influence of relative humidity on particulate interactions in carrier-based dry powder inhaler formulations. Price R; Young PM; Edge S; Staniforth JN Int J Pharm; 2002 Oct; 246(1-2):47-59. PubMed ID: 12270608 [TBL] [Abstract][Full Text] [Related]
2. The cohesive-adhesive balances in dry powder inhaler formulations I: Direct quantification by atomic force microscopy. Begat P; Morton DA; Staniforth JN; Price R Pharm Res; 2004 Sep; 21(9):1591-7. PubMed ID: 15497684 [TBL] [Abstract][Full Text] [Related]
3. Humidity-induced changes of the aerodynamic properties of dry powder aerosol formulations containing different carriers. Zeng XM; MacRitchie HB; Marriott C; Martin GP Int J Pharm; 2007 Mar; 333(1-2):45-55. PubMed ID: 17064863 [TBL] [Abstract][Full Text] [Related]
4. Comparison of the cohesion-adhesion balance approach to colloidal probe atomic force microscopy and the measurement of Hansen partial solubility parameters by inverse gas chromatography for the prediction of dry powder inhalation performance. Jones MD; Buckton G Int J Pharm; 2016 Jul; 509(1-2):419-430. PubMed ID: 27265314 [TBL] [Abstract][Full Text] [Related]
5. Comparative study of erythritol and lactose monohydrate as carriers for inhalation: atomic force microscopy and in vitro correlation. Traini D; Young PM; Jones M; Edge S; Price R Eur J Pharm Sci; 2006 Feb; 27(2-3):243-51. PubMed ID: 16330191 [TBL] [Abstract][Full Text] [Related]
6. Evaluation of SCF-engineered particle-based lactose blends in passive dry powder inhalers. Schiavone H; Palakodaty S; Clark A; York P; Tzannis ST Int J Pharm; 2004 Aug; 281(1-2):55-66. PubMed ID: 15288343 [TBL] [Abstract][Full Text] [Related]
7. Influence of storage humidity on the in vitro inhalation properties of salbutamol sulfate dry powder with surface covered lactose carrier. Iida K; Hayakawa Y; Okamoto H; Danjo K; Luenberger H Chem Pharm Bull (Tokyo); 2004 Apr; 52(4):444-6. PubMed ID: 15056961 [TBL] [Abstract][Full Text] [Related]
8. Influence of humidity on the electrostatic charge and aerosol performance of dry powder inhaler carrier based systems. Young PM; Sung A; Traini D; Kwok P; Chiou H; Chan HK Pharm Res; 2007 May; 24(5):963-70. PubMed ID: 17377746 [TBL] [Abstract][Full Text] [Related]
9. Lactose composite carriers for respiratory delivery. Young PM; Kwok P; Adi H; Chan HK; Traini D Pharm Res; 2009 Apr; 26(4):802-10. PubMed ID: 19015956 [TBL] [Abstract][Full Text] [Related]
10. Electrostatic characterisation of inhaled powders: effect of contact surface and relative humidity. Elajnaf A; Carter P; Rowley G Eur J Pharm Sci; 2006 Dec; 29(5):375-84. PubMed ID: 16952450 [TBL] [Abstract][Full Text] [Related]
11. The influence of crystal habit on the prediction of dry powder inhalation formulation performance using the cohesive-adhesive force balance approach. Hooton JC; Jones MD; Harris H; Shur J; Price R Drug Dev Ind Pharm; 2008 Sep; 34(9):974-83. PubMed ID: 18622874 [TBL] [Abstract][Full Text] [Related]
12. Dry powder inhaler: influence of humidity on topology and adhesion studied by AFM. Bérard V; Lesniewska E; Andrès C; Pertuy D; Laroche C; Pourcelot Y Int J Pharm; 2002 Jan; 232(1-2):213-24. PubMed ID: 11790505 [TBL] [Abstract][Full Text] [Related]
13. Influence of primary crystallisation conditions on the mechanical and interfacial properties of micronised budesonide for dry powder inhalation. Kubavat HA; Shur J; Ruecroft G; Hipkiss D; Price R Int J Pharm; 2012 Jul; 430(1-2):26-33. PubMed ID: 22449413 [TBL] [Abstract][Full Text] [Related]
14. The contribution of different formulation components on the aerosol charge in carrier-based dry powder inhaler systems. Hoe S; Traini D; Chan HK; Young PM Pharm Res; 2010 Jul; 27(7):1325-36. PubMed ID: 20354768 [TBL] [Abstract][Full Text] [Related]
15. Adhesion forces in interactive mixtures for dry powder inhalers--evaluation of a new measuring method. Lohrmann M; Kappl M; Butt HJ; Urbanetz NA; Lippold BC Eur J Pharm Biopharm; 2007 Sep; 67(2):579-86. PubMed ID: 17418548 [TBL] [Abstract][Full Text] [Related]
16. Preparation and Evaluation of Surface Modified Lactose Particles for Improved Performance of Fluticasone Propionate Dry Powder Inhaler. Singh DJ; Jain RR; Soni PS; Abdul S; Darshana H; Gaikwad RV; Menon MD J Aerosol Med Pulm Drug Deliv; 2015 Aug; 28(4):254-67. PubMed ID: 25517187 [TBL] [Abstract][Full Text] [Related]
17. Air classifier technology (ACT) in dry powder inhalation Part 4. Performance of air classifier technology in the Novolizer multi-dose dry powder inhaler. de Boer AH; Hagedoorn P; Gjaltema D; Goede J; Frijlink HW Int J Pharm; 2006 Mar; 310(1-2):81-9. PubMed ID: 16442246 [TBL] [Abstract][Full Text] [Related]
18. Defining the critical material attributes of lactose monohydrate in carrier based dry powder inhaler formulations using artificial neural networks. Kinnunen H; Hebbink G; Peters H; Shur J; Price R AAPS PharmSciTech; 2014 Aug; 15(4):1009-20. PubMed ID: 24831088 [TBL] [Abstract][Full Text] [Related]
19. The cohesive-adhesive balances in dry powder inhaler formulations II: influence on fine particle delivery characteristics. Begat P; Morton DA; Staniforth JN; Price R Pharm Res; 2004 Oct; 21(10):1826-33. PubMed ID: 15553229 [TBL] [Abstract][Full Text] [Related]
20. Predicting the behavior of novel sugar carriers for dry powder inhaler formulations via the use of a cohesive-adhesive force balance approach. Hooton JC; Jones MD; Price R J Pharm Sci; 2006 Jun; 95(6):1288-97. PubMed ID: 16637052 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]