BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 12270713)

  • 21. Glycan-dependent and -independent interactions contribute to cellular substrate recruitment by calreticulin.
    Wijeyesakere SJ; Rizvi SM; Raghavan M
    J Biol Chem; 2013 Dec; 288(49):35104-16. PubMed ID: 24100026
    [TBL] [Abstract][Full Text] [Related]  

  • 22. ERp57 and PDI: multifunctional protein disulfide isomerases with similar domain architectures but differing substrate-partner associations.
    Maattanen P; Kozlov G; Gehring K; Thomas DY
    Biochem Cell Biol; 2006 Dec; 84(6):881-9. PubMed ID: 17215875
    [TBL] [Abstract][Full Text] [Related]  

  • 23. ER-60 domains responsible for interaction with calnexin and calreticulin.
    Urade R; Okudo H; Kato H; Moriyama T; Arakaki Y
    Biochemistry; 2004 Jul; 43(27):8858-68. PubMed ID: 15236594
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Ca
    Tanikawa Y; Kanemura S; Ito D; Lin Y; Matsusaki M; Kuroki K; Yamaguchi H; Maenaka K; Lee YH; Inaba K; Okumura M
    Molecules; 2021 May; 26(10):. PubMed ID: 34064874
    [TBL] [Abstract][Full Text] [Related]  

  • 25. In vitro assays of the functions of calnexin and calreticulin, lectin chaperones of the endoplasmic reticulum.
    Ireland BS; Niggemann M; Williams DB
    Methods Mol Biol; 2006; 347():331-42. PubMed ID: 17072021
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Specific interaction of ERp57 and calnexin determined by NMR spectroscopy and an ER two-hybrid system.
    Pollock S; Kozlov G; Pelletier MF; Trempe JF; Jansen G; Sitnikov D; Bergeron JJ; Gehring K; Ekiel I; Thomas DY
    EMBO J; 2004 Mar; 23(5):1020-9. PubMed ID: 14988724
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Isothermal titration calorimetric study defines the substrate binding residues of calreticulin.
    Gopalakrishnapai J; Gupta G; Karthikeyan T; Sinha S; Kandiah E; Gemma E; Oscarson S; Surolia A
    Biochem Biophys Res Commun; 2006 Dec; 351(1):14-20. PubMed ID: 17049488
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Calnexin and calreticulin binding to human thyroperoxidase is required for its first folding step(s) but is not sufficient to promote efficient cell surface expression.
    Fayadat L; Siffroi-Fernandez S; Lanet J; Franc JL
    Endocrinology; 2000 Mar; 141(3):959-66. PubMed ID: 10698171
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Retrotranslocation of the chaperone calreticulin from the endoplasmic reticulum lumen to the cytosol.
    Afshar N; Black BE; Paschal BM
    Mol Cell Biol; 2005 Oct; 25(20):8844-53. PubMed ID: 16199864
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Probing the three-dimensional structure of human calreticulin.
    Bouvier M; Stafford WF
    Biochemistry; 2000 Dec; 39(48):14950-9. PubMed ID: 11101311
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Beyond lectins: the calnexin/calreticulin chaperone system of the endoplasmic reticulum.
    Williams DB
    J Cell Sci; 2006 Feb; 119(Pt 4):615-23. PubMed ID: 16467570
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Molecular insight for the role of key residues of calreticulin in its binding activities: A computational study.
    Yang H; Ahmad ZA; Song Y
    Comput Biol Chem; 2020 Apr; 85():107228. PubMed ID: 32062378
    [TBL] [Abstract][Full Text] [Related]  

  • 33. NMR structure of the J-domain and the Gly/Phe-rich region of the Escherichia coli DnaJ chaperone.
    Pellecchia M; Szyperski T; Wall D; Georgopoulos C; Wüthrich K
    J Mol Biol; 1996 Jul; 260(2):236-50. PubMed ID: 8764403
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Mutational analysis provides molecular insight into the carbohydrate-binding region of calreticulin: pivotal roles of tyrosine-109 and aspartate-135 in carbohydrate recognition.
    Kapoor M; Ellgaard L; Gopalakrishnapai J; Schirra C; Gemma E; Oscarson S; Helenius A; Surolia A
    Biochemistry; 2004 Jan; 43(1):97-106. PubMed ID: 14705935
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Design and synthesis of oligosaccharides that interfere with glycoprotein quality-control systems.
    Arai MA; Matsuo I; Hagihara S; Totani K; Maruyama J; Kitamoto K; Ito Y
    Chembiochem; 2005 Dec; 6(12):2281-9. PubMed ID: 16283686
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Oligosaccharide binding characteristics of the molecular chaperones calnexin and calreticulin.
    Vassilakos A; Michalak M; Lehrman MA; Williams DB
    Biochemistry; 1998 Mar; 37(10):3480-90. PubMed ID: 9521669
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The co-translocation of ERp57 and calreticulin determines the immunogenicity of cell death.
    Panaretakis T; Joza N; Modjtahedi N; Tesniere A; Vitale I; Durchschlag M; Fimia GM; Kepp O; Piacentini M; Froehlich KU; van Endert P; Zitvogel L; Madeo F; Kroemer G
    Cell Death Differ; 2008 Sep; 15(9):1499-509. PubMed ID: 18464797
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Stratified analysis of lectin-like chaperones in the folding disease-related metabolic syndrome rat model.
    Hirano M; Imagawa A; Totani K
    Biochem Biophys Res Commun; 2016 Sep; 478(1):247-253. PubMed ID: 27425249
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Calreticulin, a multi-process calcium-buffering chaperone of the endoplasmic reticulum.
    Michalak M; Groenendyk J; Szabo E; Gold LI; Opas M
    Biochem J; 2009 Feb; 417(3):651-66. PubMed ID: 19133842
    [TBL] [Abstract][Full Text] [Related]  

  • 40. NMR solution structure of the 21 kDa chaperone protein DnaK substrate binding domain: a preview of chaperone-protein interaction.
    Wang H; Kurochkin AV; Pang Y; Hu W; Flynn GC; Zuiderweg ER
    Biochemistry; 1998 Jun; 37(22):7929-40. PubMed ID: 9609686
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.