BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 12270713)

  • 41. Effects of calcium-dependent molecular chaperones and endoplasmic reticulum in the amygdala in rats under single‑prolonged stress.
    Xiao B; Wang JG; Han F; Shi YX
    Mol Med Rep; 2018 Jan; 17(1):1099-1104. PubMed ID: 29115545
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Identification of an N-domain histidine essential for chaperone function in calreticulin.
    Guo L; Groenendyk J; Papp S; Dabrowska M; Knoblach B; Kay C; Parker JM; Opas M; Michalak M
    J Biol Chem; 2003 Dec; 278(50):50645-53. PubMed ID: 14522955
    [TBL] [Abstract][Full Text] [Related]  

  • 43. The interplay between calcium and the in vitro lectin and chaperone activities of calreticulin.
    Conte IL; Keith N; Gutiérrez-Gonzalez C; Parodi AJ; Caramelo JJ
    Biochemistry; 2007 Apr; 46(15):4671-80. PubMed ID: 17385894
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Exploring the folding funnel of a polypeptide chain by biophysical studies on protein fragments.
    Neira JL; Fersht AR
    J Mol Biol; 1999 Jan; 285(3):1309-33. PubMed ID: 9887278
    [TBL] [Abstract][Full Text] [Related]  

  • 45. The Structure of calnexin, an ER chaperone involved in quality control of protein folding.
    Schrag JD; Bergeron JJ; Li Y; Borisova S; Hahn M; Thomas DY; Cygler M
    Mol Cell; 2001 Sep; 8(3):633-44. PubMed ID: 11583625
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Folding and domain-domain interactions of the chaperone PapD measured by 19F NMR.
    Bann JG; Frieden C
    Biochemistry; 2004 Nov; 43(43):13775-86. PubMed ID: 15504040
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Defining substrate interactions with calreticulin: an isothermal titration calorimetric study.
    Gupta G; Gemma E; Oscarson S; Surolia A
    Glycoconj J; 2008 Nov; 25(8):797-802. PubMed ID: 18553166
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Solution structures of a 30-residue amino-terminal domain of the carp granulin-1 protein and its amino-terminally truncated 3-30 subfragment: implications for the conformational stability of the stack of two beta-hairpins.
    Vranken WF; James S; Bennett HP; Ni F
    Proteins; 2002 Apr; 47(1):14-24. PubMed ID: 11870861
    [TBL] [Abstract][Full Text] [Related]  

  • 49. The zinc-dependent redox switch domain of the chaperone Hsp33 has a novel fold.
    Won HS; Low LY; Guzman RD; Martinez-Yamout M; Jakob U; Dyson HJ
    J Mol Biol; 2004 Aug; 341(4):893-9. PubMed ID: 15328602
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Calnexin and ERp57 facilitate the assembly of the neonatal Fc receptor for IgG with beta 2-microglobulin in the endoplasmic reticulum.
    Zhu X; Peng J; Chen D; Liu X; Ye L; Iijima H; Kadavil K; Lencer WI; Blumberg RS
    J Immunol; 2005 Jul; 175(2):967-76. PubMed ID: 16002696
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Towards a complete description of the structural and dynamic properties of the denatured state of barnase and the role of residual structure in folding.
    Wong KB; Clarke J; Bond CJ; Neira JL; Freund SM; Fersht AR; Daggett V
    J Mol Biol; 2000 Mar; 296(5):1257-82. PubMed ID: 10698632
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Association of the thyrotropin receptor with calnexin, calreticulin and BiP. Efects on the maturation of the receptor.
    Siffroi-Fernandez S; Giraud A; Lanet J; Franc JL
    Eur J Biochem; 2002 Oct; 269(20):4930-7. PubMed ID: 12383251
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Role of calnexin, calreticulin, and endoplasmic reticulum mannosidase I in apolipoprotein(a) intracellular targeting.
    Wang J; White AL
    Biochemistry; 2000 Aug; 39(30):8993-9000. PubMed ID: 10913312
    [TBL] [Abstract][Full Text] [Related]  

  • 54. The anti-adhesive activity of thrombospondin is mediated by the N-terminal domain of cell surface calreticulin.
    Goicoechea S; Pallero MA; Eggleton P; Michalak M; Murphy-Ullrich JE
    J Biol Chem; 2002 Oct; 277(40):37219-28. PubMed ID: 12147682
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Structural basis of carbohydrate recognition by calreticulin.
    Kozlov G; Pocanschi CL; Rosenauer A; Bastos-Aristizabal S; Gorelik A; Williams DB; Gehring K
    J Biol Chem; 2010 Dec; 285(49):38612-20. PubMed ID: 20880849
    [TBL] [Abstract][Full Text] [Related]  

  • 56. NMR solution structure, stability, and interaction of the recombinant bovine fibrinogen alphaC-domain fragment.
    Burton RA; Tsurupa G; Hantgan RR; Tjandra N; Medved L
    Biochemistry; 2007 Jul; 46(29):8550-60. PubMed ID: 17590019
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Kinetics of interactions of sendai virus envelope glycoproteins, F and HN, with endoplasmic reticulum-resident molecular chaperones, BiP, calnexin, and calreticulin.
    Tomita Y; Yamashita T; Sato H; Taira H
    J Biochem; 1999 Dec; 126(6):1090-100. PubMed ID: 10578061
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Calnexin and calreticulin promote folding, delay oligomerization and suppress degradation of influenza hemagglutinin in microsomes.
    Hebert DN; Foellmer B; Helenius A
    EMBO J; 1996 Jun; 15(12):2961-8. PubMed ID: 8670797
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Structure of the noncatalytic domains and global fold of the protein disulfide isomerase ERp72.
    Kozlov G; Määttänen P; Schrag JD; Hura GL; Gabrielli L; Cygler M; Thomas DY; Gehring K
    Structure; 2009 May; 17(5):651-9. PubMed ID: 19446521
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Small angle X-ray scattering study of calreticulin reveals conformational plasticity.
    Nørgaard Toft K; Larsen N; Steen Jørgensen F; Højrup P; Houen G; Vestergaard B
    Biochim Biophys Acta; 2008 Sep; 1784(9):1265-70. PubMed ID: 18559259
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.