BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

419 related articles for article (PubMed ID: 12270719)

  • 1. Ion permeation and selectivity of OmpF porin: a theoretical study based on molecular dynamics, Brownian dynamics, and continuum electrodiffusion theory.
    Im W; Roux B
    J Mol Biol; 2002 Sep; 322(4):851-69. PubMed ID: 12270719
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ions and counterions in a biological channel: a molecular dynamics simulation of OmpF porin from Escherichia coli in an explicit membrane with 1 M KCl aqueous salt solution.
    Im W; Roux B
    J Mol Biol; 2002 Jun; 319(5):1177-97. PubMed ID: 12079356
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ion permeation through the alpha-hemolysin channel: theoretical studies based on Brownian dynamics and Poisson-Nernst-Plank electrodiffusion theory.
    Noskov SY; Im W; Roux B
    Biophys J; 2004 Oct; 87(4):2299-309. PubMed ID: 15454431
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electrostatic properties and macroscopic electrodiffusion in OmpF porin and mutants.
    Aguilella-Arzo M; García-Celma JJ; Cervera J; Alcaraz A; Aguilella VM
    Bioelectrochemistry; 2007 May; 70(2):320-7. PubMed ID: 16769257
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Critical assessment of OmpF channel selectivity: merging information from different experimental protocols.
    López ML; García-Giménez E; Aguilella VM; Alcaraz A
    J Phys Condens Matter; 2010 Nov; 22(45):454106. PubMed ID: 21339594
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role of charged residues at the OmpF porin channel constriction probed by mutagenesis and simulation.
    Phale PS; Philippsen A; Widmer C; Phale VP; Rosenbusch JP; Schirmer T
    Biochemistry; 2001 May; 40(21):6319-25. PubMed ID: 11371193
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Poisson-Nernst-Planck models of nonequilibrium ion electrodiffusion through a protegrin transmembrane pore.
    Bolintineanu DS; Sayyed-Ahmad A; Davis HT; Kaznessis YN
    PLoS Comput Biol; 2009 Jan; 5(1):e1000277. PubMed ID: 19180178
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Selectivity of Protein Ion Channels and the Role of Buried Charges. Analytical Solutions, Numerical Calculations, and MD Simulations.
    García-Giménez E; Alcaraz A; Aguilella-Arzo M; Aguilella VM
    J Phys Chem B; 2015 Jul; 119(27):8475-9. PubMed ID: 26091047
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Brownian dynamics simulation of ion flow through porin channels.
    Schirmer T; Phale PS
    J Mol Biol; 1999 Dec; 294(5):1159-67. PubMed ID: 10600374
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The role of the dielectric barrier in narrow biological channels: a novel composite approach to modeling single-channel currents.
    Mamonov AB; Coalson RD; Nitzan A; Kurnikova MG
    Biophys J; 2003 Jun; 84(6):3646-61. PubMed ID: 12770873
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular origin of the cation selectivity in OmpF porin: single channel conductances vs. free energy calculation.
    Danelon C; Suenaga A; Winterhalter M; Yamato I
    Biophys Chem; 2003 Jul; 104(3):591-603. PubMed ID: 12914905
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Salting out the ionic selectivity of a wide channel: the asymmetry of OmpF.
    Alcaraz A; Nestorovich EM; Aguilella-Arzo M; Aguilella VM; Bezrukov SM
    Biophys J; 2004 Aug; 87(2):943-57. PubMed ID: 15298901
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A structural study of ion permeation in OmpF porin from anomalous X-ray diffraction and molecular dynamics simulations.
    Dhakshnamoorthy B; Ziervogel BK; Blachowicz L; Roux B
    J Am Chem Soc; 2013 Nov; 135(44):16561-8. PubMed ID: 24106986
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Understanding ion conductance on a molecular level: an all-atom modeling of the bacterial porin OmpF.
    Pezeshki S; Chimerel C; Bessonov AN; Winterhalter M; Kleinekathöfer U
    Biophys J; 2009 Oct; 97(7):1898-906. PubMed ID: 19804720
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electrostatic properties of two porin channels from Escherichia coli.
    Karshikoff A; Spassov V; Cowan SW; Ladenstein R; Schirmer T
    J Mol Biol; 1994 Jul; 240(4):372-84. PubMed ID: 8035460
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Why do the outer membrane proteins OmpF from E. coli and OprP from P. aeruginosa prefer trimers? Simulation studies.
    Niramitranon J; Sansom MS; Pongprayoon P
    J Mol Graph Model; 2016 Apr; 65():1-7. PubMed ID: 26895142
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A fast in silico simulation of ion flux through the large-pore channel proteins.
    Bransburg-Zabary S; Nachliel E; Gutman M
    Biophys J; 2002 Dec; 83(6):3001-11. PubMed ID: 12496073
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Selectivity and permeation in calcium release channel of cardiac muscle: alkali metal ions.
    Chen DP; Xu L; Tripathy A; Meissner G; Eisenberg B
    Biophys J; 1999 Mar; 76(3):1346-66. PubMed ID: 10049318
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular origin of VDAC selectivity towards inorganic ions: a combined molecular and Brownian dynamics study.
    Krammer EM; Homblé F; Prévost M
    Biochim Biophys Acta; 2013 Apr; 1828(4):1284-92. PubMed ID: 23313453
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Grand Canonical Monte Carlo-Brownian dynamics algorithm for simulating ion channels.
    Im W; Seefeld S; Roux B
    Biophys J; 2000 Aug; 79(2):788-801. PubMed ID: 10920012
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.