BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

283 related articles for article (PubMed ID: 12270822)

  • 1. Adaptive, or stationary-phase, mutagenesis, a component of bacterial differentiation in Bacillus subtilis.
    Sung HM; Yasbin RE
    J Bacteriol; 2002 Oct; 184(20):5641-53. PubMed ID: 12270822
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The
    Martin HA; Kidman AA; Socea J; Vallin C; Pedraza-Reyes M; Robleto EA
    Genes (Basel); 2020 Feb; 11(2):. PubMed ID: 32053972
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bistability in the Bacillus subtilis K-state (competence) system requires a positive feedback loop.
    Maamar H; Dubnau D
    Mol Microbiol; 2005 May; 56(3):615-24. PubMed ID: 15819619
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Regulation of Bacillus subtilis gene expression during the transition from exponential growth to stationary phase.
    Strauch MA
    Prog Nucleic Acid Res Mol Biol; 1993; 46():121-53. PubMed ID: 8234782
    [No Abstract]   [Full Text] [Related]  

  • 5. Role of Bacillus subtilis DNA Glycosylase MutM in Counteracting Oxidatively Induced DNA Damage and in Stationary-Phase-Associated Mutagenesis.
    Gómez-Marroquín M; Vidales LE; Debora BN; Santos-Escobar F; Obregón-Herrera A; Robleto EA; Pedraza-Reyes M
    J Bacteriol; 2015 Jun; 197(11):1963-71. PubMed ID: 25825434
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role of Mfd and GreA in Bacillus subtilis Base Excision Repair-Dependent Stationary-Phase Mutagenesis.
    Leyva-Sánchez HC; Villegas-Negrete N; Abundiz-Yañez K; Yasbin RE; Robleto EA; Pedraza-Reyes M
    J Bacteriol; 2020 Apr; 202(9):. PubMed ID: 32041798
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Novel role of mfd: effects on stationary-phase mutagenesis in Bacillus subtilis.
    Ross C; Pybus C; Pedraza-Reyes M; Sung HM; Yasbin RE; Robleto E
    J Bacteriol; 2006 Nov; 188(21):7512-20. PubMed ID: 16950921
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Basal expression rate of comK sets a 'switching-window' into the K-state of Bacillus subtilis.
    Leisner M; Stingl K; Rädler JO; Maier B
    Mol Microbiol; 2007 Mar; 63(6):1806-16. PubMed ID: 17367397
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Controlling competence in Bacillus subtilis: shared use of regulators.
    Hamoen LW; Venema G; Kuipers OP
    Microbiology (Reading); 2003 Jan; 149(Pt 1):9-17. PubMed ID: 12576575
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Noise in gene expression determines cell fate in Bacillus subtilis.
    Maamar H; Raj A; Dubnau D
    Science; 2007 Jul; 317(5837):526-9. PubMed ID: 17569828
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microarray analysis of the Bacillus subtilis K-state: genome-wide expression changes dependent on ComK.
    Berka RM; Hahn J; Albano M; Draskovic I; Persuh M; Cui X; Sloma A; Widner W; Dubnau D
    Mol Microbiol; 2002 Mar; 43(5):1331-45. PubMed ID: 11918817
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Bacillus subtilis transition state regulator AbrB binds to the -35 promoter region of comK.
    Hamoen LW; Kausche D; Marahiel MA; van Sinderen D; Venema G; Serror P
    FEMS Microbiol Lett; 2003 Jan; 218(2):299-304. PubMed ID: 12586407
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In Bacillus subtilis LutR is part of the global complex regulatory network governing the adaptation to the transition from exponential growth to stationary phase.
    İrigül-Sönmez Ö; Köroğlu TE; Öztürk B; Kovács ÁT; Kuipers OP; Yazgan-Karataş A
    Microbiology (Reading); 2014 Feb; 160(Pt 2):243-260. PubMed ID: 24196425
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Small regulatory RNA-induced growth rate heterogeneity of Bacillus subtilis.
    Mars RA; Nicolas P; Ciccolini M; Reilman E; Reder A; Schaffer M; Mäder U; Völker U; van Dijl JM; Denham EL
    PLoS Genet; 2015 Mar; 11(3):e1005046. PubMed ID: 25790031
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Conservation of genes and processes controlled by the quorum response in bacteria: characterization of genes controlled by the quorum-sensing transcription factor ComA in Bacillus subtilis.
    Comella N; Grossman AD
    Mol Microbiol; 2005 Aug; 57(4):1159-74. PubMed ID: 16091051
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Functional analysis of the competence transcription factor ComK of Bacillus subtilis by characterization of truncation variants.
    Susanna KA; Fusetti F; Thunnissen AWH; Hamoen LW; Kuipers OP
    Microbiology (Reading); 2006 Feb; 152(Pt 2):473-483. PubMed ID: 16436435
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Novel Feedback Loop That Controls Bimodal Expression of Genetic Competence.
    Gamba P; Jonker MJ; Hamoen LW
    PLoS Genet; 2015 Jun; 11(6):e1005047. PubMed ID: 26110430
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Regulation of synthesis of the Bacillus subtilis transition-phase, spore-associated antibacterial protein TasA.
    Stöver AG; Driks A
    J Bacteriol; 1999 Sep; 181(17):5476-81. PubMed ID: 10464223
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Changes in DnaA-dependent gene expression contribute to the transcriptional and developmental response of Bacillus subtilis to manganese limitation in Luria-Bertani medium.
    Hoover SE; Xu W; Xiao W; Burkholder WF
    J Bacteriol; 2010 Aug; 192(15):3915-24. PubMed ID: 20511500
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A molecular switch controlling competence and motility: competence regulatory factors ComS, MecA, and ComK control sigmaD-dependent gene expression in Bacillus subtilis.
    Liu J; Zuber P
    J Bacteriol; 1998 Aug; 180(16):4243-51. PubMed ID: 9696775
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.