These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 12270903)

  • 21. NUCLEIC ACID SEQUENCE PHYLOGENY AND RANDOM OUTGROUPS.
    Wheeler WC
    Cladistics; 1990 Dec; 6(4):363-367. PubMed ID: 34933486
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Monocot plastid phylogenomics, timeline, net rates of species diversification, the power of multi-gene analyses, and a functional model for the origin of monocots.
    Givnish TJ; Zuluaga A; Spalink D; Soto Gomez M; Lam VKY; Saarela JM; Sass C; Iles WJD; de Sousa DJL; Leebens-Mack J; Chris Pires J; Zomlefer WB; Gandolfo MA; Davis JI; Stevenson DW; dePamphilis C; Specht CD; Graham SW; Barrett CF; Ané C
    Am J Bot; 2018 Nov; 105(11):1888-1910. PubMed ID: 30368769
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Rooting for the root of elongation factor-like protein phylogeny.
    Kamikawa R; Sakaguchi M; Matsumoto T; Hashimoto T; Inagaki Y
    Mol Phylogenet Evol; 2010 Sep; 56(3):1082-8. PubMed ID: 20450979
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Systematics of the lizard family pygopodidae with implications for the diversification of Australian temperate biotas.
    Jennings WB; Pianka ER; Donnellan S
    Syst Biol; 2003 Dec; 52(6):757-80. PubMed ID: 14668116
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Rooting phylogenetic trees under the coalescent model using site pattern probabilities.
    Tian Y; Kubatko L
    BMC Evol Biol; 2017 Dec; 17(1):263. PubMed ID: 29258427
    [TBL] [Abstract][Full Text] [Related]  

  • 26. 18S gene trees are positively misleading for monocot/dicot phylogenetics.
    Duvall MR; Bricker Ervin A
    Mol Phylogenet Evol; 2004 Jan; 30(1):97-106. PubMed ID: 15022761
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Phylogenetics of Coenonymphina (Nymphalidae: Satyrinae) and the problem of rooting rapid radiations.
    Kodandaramaiah U; Peña C; Braby MF; Grund R; Müller CJ; Nylin S; Wahlberg N
    Mol Phylogenet Evol; 2010 Feb; 54(2):386-94. PubMed ID: 19686856
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Rabbits, if anything, are likely Glires.
    Douzery EJ; Huchon D
    Mol Phylogenet Evol; 2004 Dec; 33(3):922-35. PubMed ID: 15522813
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Rooting phylogenies using gene duplications: an empirical example from the bees (Apoidea).
    Brady SG; Litman JR; Danforth BN
    Mol Phylogenet Evol; 2011 Sep; 60(3):295-304. PubMed ID: 21600997
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Rooting and dating maples (Acer) with an uncorrelated-rates molecular clock: implications for north American/Asian disjunctions.
    Renner SS; Grimm GW; Schneeweiss GM; Stuessy TF; Ricklefs RE
    Syst Biol; 2008 Oct; 57(5):795-808. PubMed ID: 18853365
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The performance of outgroup-free rooting under evolutionary radiations.
    Lamarca AP; Mello B; Schrago CG
    Mol Phylogenet Evol; 2022 Apr; 169():107434. PubMed ID: 35143961
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A partitioned likelihood analysis of swallowtail butterfly phylogeny (Lepidoptera:Papilionidae).
    Caterino MS; Reed RD; Kuo MM; Sperling FA
    Syst Biol; 2001 Feb; 50(1):106-27. PubMed ID: 12116588
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Minimum variance rooting of phylogenetic trees and implications for species tree reconstruction.
    Mai U; Sayyari E; Mirarab S
    PLoS One; 2017; 12(8):e0182238. PubMed ID: 28800608
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The phylogeny of the Asteridae sensu lato based on chloroplast ndhF gene sequences.
    Olmstead RG; Kim KJ; Jansen RK; Wagstaff SJ
    Mol Phylogenet Evol; 2000 Jul; 16(1):96-112. PubMed ID: 10877943
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Finding optimal ingroup topologies and convexities when the choice of outgroups is not obvious.
    Milinkovitch MC; Lyons-Weiler J
    Mol Phylogenet Evol; 1998 Jun; 9(3):348-57. PubMed ID: 9667982
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Universal artifacts affect the branching of phylogenetic trees, not universal scaling laws.
    Altaba CR
    PLoS One; 2009; 4(2):e4611. PubMed ID: 19242549
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Parasitism and mutualism in Wolbachia: what the phylogenomic trees can and cannot say.
    Bordenstein SR; Paraskevopoulos C; Dunning Hotopp JC; Sapountzis P; Lo N; Bandi C; Tettelin H; Werren JH; Bourtzis K
    Mol Biol Evol; 2009 Jan; 26(1):231-41. PubMed ID: 18974066
    [TBL] [Abstract][Full Text] [Related]  

  • 38. [Foundations of the new phylogenetics].
    Pavlinov IIa
    Zh Obshch Biol; 2004; 65(4):334-66. PubMed ID: 15490579
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Cytochrome b phylogeny of North American hares and jackrabbits (Lepus, lagomorpha) and the effects of saturation in outgroup taxa.
    Halanych KM; Demboski JR; van Vuuren BJ; Klein DR; Cook JA
    Mol Phylogenet Evol; 1999 Mar; 11(2):213-21. PubMed ID: 10191066
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Root Digger: a root placement program for phylogenetic trees.
    Bettisworth B; Stamatakis A
    BMC Bioinformatics; 2021 May; 22(1):225. PubMed ID: 33932975
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.