These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 12271080)

  • 1. cAMP Regulates Infection Structure Formation in the Plant Pathogenic Fungus Magnaporthe grisea.
    Lee YH; Dean RA
    Plant Cell; 1993 Jun; 5(6):693-700. PubMed ID: 12271080
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cyclic AMP Restores Appressorium Formation Inhibited by Polyamines in Magnaporthe grisea.
    Choi WB; Kang SH; Lee YW; Lee YH
    Phytopathology; 1998 Jan; 88(1):58-62. PubMed ID: 18945000
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Large scale parallel analysis of gene expression during infection-related morphogenesis of Magnaporthe grisea.
    Takano Y; Choi W; Mitchell TK; Okuno T; Dean RA
    Mol Plant Pathol; 2003 Sep; 4(5):337-46. PubMed ID: 20569394
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Serial Analysis of Gene Expression (SAGE) of Magnaporthe grisea: genes involved in appressorium formation.
    Irie T; Matsumura H; Terauchi R; Saitoh H
    Mol Genet Genomics; 2003 Nov; 270(2):181-9. PubMed ID: 12955499
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Two PAK kinase genes, CHM1 and MST20, have distinct functions in Magnaporthe grisea.
    Li L; Xue C; Bruno K; Nishimura M; Xu JR
    Mol Plant Microbe Interact; 2004 May; 17(5):547-56. PubMed ID: 15141959
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fatty Acids and Their Derivatives as Modulators of Appressorium Formation in Magnaporthe grisea.
    Eilbert F; Thines E; Sterner O; Anke H
    Biosci Biotechnol Biochem; 1999; 63(5):879-83. PubMed ID: 27385571
    [TBL] [Abstract][Full Text] [Related]  

  • 7. PAF104, a synthetic peptide to control rice blast disease by blocking appressorium formation in Magnaporthe oryzae.
    Rebollar A; López-García B
    Mol Plant Microbe Interact; 2013 Dec; 26(12):1407-16. PubMed ID: 23902261
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The adenylate cyclase gene MAC1 of Magnaporthe grisea controls appressorium formation and other aspects of growth and development.
    Choi W; Dean RA
    Plant Cell; 1997 Nov; 9(11):1973-83. PubMed ID: 9401122
    [TBL] [Abstract][Full Text] [Related]  

  • 9. MAP kinase and cAMP signaling regulate infection structure formation and pathogenic growth in the rice blast fungus Magnaporthe grisea.
    Xu JR; Hamer JE
    Genes Dev; 1996 Nov; 10(21):2696-706. PubMed ID: 8946911
    [TBL] [Abstract][Full Text] [Related]  

  • 10. MST12 regulates infectious growth but not appressorium formation in the rice blast fungus Magnaporthe grisea.
    Park G; Xue C; Zheng L; Lam S; Xu JR
    Mol Plant Microbe Interact; 2002 Mar; 15(3):183-92. PubMed ID: 11952120
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The cAMP-dependent protein kinase catalytic subunit is required for appressorium formation and pathogenesis by the rice blast pathogen Magnaporthe grisea.
    Mitchell TK; Dean RA
    Plant Cell; 1995 Nov; 7(11):1869-78. PubMed ID: 8535140
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Calcium/calmodulin-dependent signaling for appressorium formation in the plant pathogenic fungus Magnaporthe grisea.
    Lee SC; Lee YH
    Mol Cells; 1998 Dec; 8(6):698-704. PubMed ID: 9895122
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Target-Site-Specific Screening System for Antifungal Compounds on Appressorium Formation in Magnaporthe grisea.
    Oh HS; Lee YH
    Phytopathology; 2000 Oct; 90(10):1162-8. PubMed ID: 18944481
    [TBL] [Abstract][Full Text] [Related]  

  • 14. cDNA Subtractive Cloning of Genes Expressed during Early Stage of Appressorium Formation by Magnaporthe grisea.
    Kamakura T; Xiao JZ; Choi WB; Kochi T; Yamaguchi S; Teraoka T; Yamaguchi I
    Biosci Biotechnol Biochem; 1999; 63(8):1407-13. PubMed ID: 27389505
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Early expression of the calmodulin gene, which precedes appressorium formation in Magnaporthe grisea, is inhibited by self-inhibitors and requires surface attachment.
    Liu ZM; Kolattukudy PE
    J Bacteriol; 1999 Jun; 181(11):3571-7. PubMed ID: 10348871
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Differences between appressoria formed by germ tubes and appressorium-like structures developed by hyphal tips in Magnaporthe oryzae.
    Kong LA; Li GT; Liu Y; Liu MG; Zhang SJ; Yang J; Zhou XY; Peng YL; Xu JR
    Fungal Genet Biol; 2013 Jul; 56():33-41. PubMed ID: 23591122
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Proteome analysis of rice blast fungus (Magnaporthe grisea) proteome during appressorium formation.
    Kim ST; Yu S; Kim SG; Kim HJ; Kang SY; Hwang DH; Jang YS; Kang KY
    Proteomics; 2004 Nov; 4(11):3579-87. PubMed ID: 15378734
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Peroxisomal carnitine acetyl transferase is required for elaboration of penetration hyphae during plant infection by Magnaporthe grisea.
    Bhambra GK; Wang ZY; Soanes DM; Wakley GE; Talbot NJ
    Mol Microbiol; 2006 Jul; 61(1):46-60. PubMed ID: 16824094
    [TBL] [Abstract][Full Text] [Related]  

  • 19. cAMP regulation of "pathogenic" and "saprophytic" fungal spore germination.
    Barhoom S; Sharon A
    Fungal Genet Biol; 2004 Mar; 41(3):317-26. PubMed ID: 14761792
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A novel gene, CBP1, encoding a putative extracellular chitin-binding protein, may play an important role in the hydrophobic surface sensing of Magnaporthe grisea during appressorium differentiation.
    Kamakura T; Yamaguchi S; Saitoh K; Teraoka T; Yamaguchi I
    Mol Plant Microbe Interact; 2002 May; 15(5):437-44. PubMed ID: 12036274
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.