BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

48 related articles for article (PubMed ID: 12271459)

  • 1. Putative xylose and arabinose reductases in Saccharomyces cerevisiae.
    Träff KL; Jönsson LJ; Hahn-Hägerdal B
    Yeast; 2002 Oct; 19(14):1233-41. PubMed ID: 12271459
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Construction of plasmid-free Escherichia coli for the production of arabitol-free xylitol from corncob hemicellulosic hydrolysate.
    Su B; Zhang Z; Wu M; Lin J; Yang L
    Sci Rep; 2016 May; 6():26567. PubMed ID: 27225023
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Non-canonical D-xylose and L-arabinose metabolism via D-arabitol in the oleaginous yeast Rhodosporidium toruloides.
    Adamczyk PA; Coradetti ST; Gladden JM
    Microb Cell Fact; 2023 Aug; 22(1):145. PubMed ID: 37537595
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Impact of xylose epimerase on sugar assimilation and sensing in recombinant Saccharomyces cerevisiae carrying different xylose-utilization pathways.
    Persson VC; Perruca Foncillas R; Anderes TR; Ginestet C; Gorwa-Grauslund M
    Biotechnol Biofuels Bioprod; 2023 Nov; 16(1):168. PubMed ID: 37932829
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Performance and robustness analysis reveals phenotypic trade-offs in yeast.
    Trivellin C; Rugbjerg P; Olsson L
    Life Sci Alliance; 2024 Jan; 7(1):. PubMed ID: 37903627
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Codon Optimization Improves the Prediction of Xylose Metabolism from Gene Content in Budding Yeasts.
    Nalabothu RL; Fisher KJ; LaBella AL; Meyer TA; Opulente DA; Wolters JF; Rokas A; Hittinger CT
    Mol Biol Evol; 2023 Jun; 40(6):. PubMed ID: 37154525
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Activation of cryptic xylose metabolism by a transcriptional activator Znf1 boosts up xylitol production in the engineered Saccharomyces cerevisiae lacking xylose suppressor BUD21 gene.
    Songdech P; Intasit R; Yingchutrakul Y; Butkinaree C; Ratanakhanokchai K; Soontorngun N
    Microb Cell Fact; 2022 Mar; 21(1):32. PubMed ID: 35248023
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Augmenting Pentose Utilization and Ethanol Production of Native
    Sharma S; Varghese E; Arora A; Singh KN; Singh S; Nain L; Paul D
    Front Bioeng Biotechnol; 2018; 6():132. PubMed ID: 30320081
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of genetic background of engineered xylose-fermenting industrial Saccharomyces cerevisiae strains for ethanol production from lignocellulosic hydrolysates.
    Lopes DD; Rosa CA; Hector RE; Dien BS; Mertens JA; Ayub MAZ
    J Ind Microbiol Biotechnol; 2017 Nov; 44(11):1575-1588. PubMed ID: 28891041
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantitative metabolomics of a xylose-utilizing Saccharomyces cerevisiae strain expressing the Bacteroides thetaiotaomicron xylose isomerase on glucose and xylose.
    Mert MJ; Rose SH; la Grange DC; Bamba T; Hasunuma T; Kondo A; van Zyl WH
    J Ind Microbiol Biotechnol; 2017 Oct; 44(10):1459-1470. PubMed ID: 28744577
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification and functional evaluation of the reductases and dehydrogenases from Saccharomyces cerevisiae involved in vanillin resistance.
    Wang X; Liang Z; Hou J; Bao X; Shen Y
    BMC Biotechnol; 2016 Apr; 16():31. PubMed ID: 27036139
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Xylose Fermentation by Saccharomyces cerevisiae: Challenges and Prospects.
    Moysés DN; Reis VC; de Almeida JR; de Moraes LM; Torres FA
    Int J Mol Sci; 2016 Feb; 17(3):207. PubMed ID: 26927067
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Engineering of Saccharomyces cerevisiae to utilize xylan as a sole carbohydrate source by co-expression of an endoxylanase, xylosidase and a bacterial xylose isomerase.
    Mert MJ; la Grange DC; Rose SH; van Zyl WH
    J Ind Microbiol Biotechnol; 2016 Apr; 43(4):431-40. PubMed ID: 26749525
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Engineering Sugar Utilization and Microbial Tolerance toward Lignocellulose Conversion.
    Nieves LM; Panyon LA; Wang X
    Front Bioeng Biotechnol; 2015; 3():17. PubMed ID: 25741507
    [TBL] [Abstract][Full Text] [Related]  

  • 15. NADH-dependent biosensor in Saccharomyces cerevisiae: principle and validation at the single cell level.
    Knudsen JD; Carlquist M; Gorwa-Grauslund M
    AMB Express; 2014; 4():81. PubMed ID: 25401080
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Engineering and two-stage evolution of a lignocellulosic hydrolysate-tolerant Saccharomyces cerevisiae strain for anaerobic fermentation of xylose from AFEX pretreated corn stover.
    Parreiras LS; Breuer RJ; Avanasi Narasimhan R; Higbee AJ; La Reau A; Tremaine M; Qin L; Willis LB; Bice BD; Bonfert BL; Pinhancos RC; Balloon AJ; Uppugundla N; Liu T; Li C; Tanjore D; Ong IM; Li H; Pohlmann EL; Serate J; Withers ST; Simmons BA; Hodge DB; Westphall MS; Coon JJ; Dale BE; Balan V; Keating DH; Zhang Y; Landick R; Gasch AP; Sato TK
    PLoS One; 2014; 9(9):e107499. PubMed ID: 25222864
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transcriptome of Saccharomyces cerevisiae during production of D-xylonate.
    Mojzita D; Oja M; Rintala E; Wiebe M; Penttilä M; Ruohonen L
    BMC Genomics; 2014 Sep; 15(1):763. PubMed ID: 25192596
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transcription analysis of recombinant industrial and laboratory Saccharomyces cerevisiae strains reveals the molecular basis for fermentation of glucose and xylose.
    Matsushika A; Goshima T; Hoshino T
    Microb Cell Fact; 2014 Jan; 13():16. PubMed ID: 24467867
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Engineering yeast hexokinase 2 for improved tolerance toward xylose-induced inactivation.
    Bergdahl B; Sandström AG; Borgström C; Boonyawan T; van Niel EW; Gorwa-Grauslund MF
    PLoS One; 2013; 8(9):e75055. PubMed ID: 24040384
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development of a D-xylose fermenting and inhibitor tolerant industrial Saccharomyces cerevisiae strain with high performance in lignocellulose hydrolysates using metabolic and evolutionary engineering.
    Demeke MM; Dietz H; Li Y; Foulquié-Moreno MR; Mutturi S; Deprez S; Den Abt T; Bonini BM; Liden G; Dumortier F; Verplaetse A; Boles E; Thevelein JM
    Biotechnol Biofuels; 2013 Jun; 6(1):89. PubMed ID: 23800147
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.