BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 12271461)

  • 1. Functional analysis of yeast gene families involved in metabolism of vitamins B1 and B6.
    Rodríguez-Navarro S; Llorente B; Rodríguez-Manzaneque MT; Ramne A; Uber G; Marchesan D; Dujon B; Herrero E; Sunnerhagen P; Pérez-Ortín JE
    Yeast; 2002 Oct; 19(14):1261-76. PubMed ID: 12271461
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The highly conserved, coregulated SNO and SNZ gene families in Saccharomyces cerevisiae respond to nutrient limitation.
    Padilla PA; Fuge EK; Crawford ME; Errett A; Werner-Washburne M
    J Bacteriol; 1998 Nov; 180(21):5718-26. PubMed ID: 9791124
    [TBL] [Abstract][Full Text] [Related]  

  • 3.
    Paxhia MD; Downs DM
    G3 (Bethesda); 2019 Feb; 9(2):335-344. PubMed ID: 30498136
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transcriptional repression by the Pho4 transcription factor controls the timing of SNZ1 expression.
    Nishizawa M; Komai T; Morohashi N; Shimizu M; Toh-e A
    Eukaryot Cell; 2008 Jun; 7(6):949-57. PubMed ID: 18408055
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Industrial fuel ethanol yeasts contain adaptive copy number changes in genes involved in vitamin B1 and B6 biosynthesis.
    Stambuk BU; Dunn B; Alves SL; Duval EH; Sherlock G
    Genome Res; 2009 Dec; 19(12):2271-8. PubMed ID: 19897511
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tpn1p, the plasma membrane vitamin B6 transporter of Saccharomyces cerevisiae.
    Stolz J; Vielreicher M
    J Biol Chem; 2003 May; 278(21):18990-6. PubMed ID: 12649274
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Analysis of the vitamin B6 biosynthesis pathway in the human malaria parasite Plasmodium falciparum.
    Wrenger C; Eschbach ML; Müller IB; Warnecke D; Walter RD
    J Biol Chem; 2005 Feb; 280(7):5242-8. PubMed ID: 15590634
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transcriptome analysis reveals the protection mechanism of proanthocyanidins for Saccharomyces cerevisiae during wine fermentation.
    Li J; Zhu K; Zhao H
    Sci Rep; 2020 Apr; 10(1):6676. PubMed ID: 32317674
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Partial Decay of Thiamine Signal Transduction Pathway Alters Growth Properties of Candida glabrata.
    Iosue CL; Attanasio N; Shaik NF; Neal EM; Leone SG; Cali BJ; Peel MT; Grannas AM; Wykoff DD
    PLoS One; 2016; 11(3):e0152042. PubMed ID: 27015653
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A stationary-phase gene in Saccharomyces cerevisiae is a member of a novel, highly conserved gene family.
    Braun EL; Fuge EK; Padilla PA; Werner-Washburne M
    J Bacteriol; 1996 Dec; 178(23):6865-72. PubMed ID: 8955308
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The THI5 gene family of Saccharomyces cerevisiae: distribution of homologues among the hemiascomycetes and functional redundancy in the aerobic biosynthesis of thiamin from pyridoxine.
    Wightman R; Meacock PA
    Microbiology (Reading); 2003 Jun; 149(Pt 6):1447-1460. PubMed ID: 12777485
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biosynthesis of vitamin B1 in yeast. Derivation of the pyrimidine unit from pyridoxine and histidine. Intermediacy of urocanic acid.
    Zeidler J; Sayer BG; Spenser ID
    J Am Chem Soc; 2003 Oct; 125(43):13094-105. PubMed ID: 14570482
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification and characterization of the thiamine transporter gene of Saccharomyces cerevisiae.
    Singleton CK
    Gene; 1997 Oct; 199(1-2):111-21. PubMed ID: 9358046
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Thiamin-dependent transactivation activity of PDC2 in Saccharomyces cerevisiae.
    Nosaka K; Onozuka M; Konno H; Akaji K
    FEBS Lett; 2008 Dec; 582(29):3991-6. PubMed ID: 19013460
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Role of YggS in Vitamin B
    Vu HN; Ito T; Downs DM
    J Bacteriol; 2020 Oct; 202(22):. PubMed ID: 32900833
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Vitamin requirements and biosynthesis in Saccharomyces cerevisiae.
    Perli T; Wronska AK; Ortiz-Merino RA; Pronk JT; Daran JM
    Yeast; 2020 Apr; 37(4):283-304. PubMed ID: 31972058
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Functional comparison of the yeast scERV1 and scERV2 genes.
    Stein G; Lisowsky T
    Yeast; 1998 Jan; 14(2):171-80. PubMed ID: 9483805
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Regulation of thiamine synthesis in Saccharomyces cerevisiae for improved pyruvate production.
    Xu G; Hua Q; Duan N; Liu L; Chen J
    Yeast; 2012 Jun; 29(6):209-17. PubMed ID: 22674684
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Neurospora crassa CyPBP37: a cytosolic stress protein that is able to replace yeast Thi4p function in the synthesis of vitamin B1.
    Faou P; Tropschug M
    J Mol Biol; 2004 Dec; 344(4):1147-57. PubMed ID: 15544818
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Regulation of THI4 (MOL1), a thiamine-biosynthetic gene of Saccharomyces cerevisiae.
    Praekelt UM; Byrne KL; Meacock PA
    Yeast; 1994 Apr; 10(4):481-90. PubMed ID: 7941734
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.