These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

60 related articles for article (PubMed ID: 1227256)

  • 1. Effect of the concentration of nitrogen compounds on microbial reduction of sulphates.
    Domka F; Gasiorek J
    Acta Microbiol Pol B; 1975; 7(4):259-62. PubMed ID: 1227256
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of the concentration of available carbon compounds on the microbial reduction of sulphates.
    Domka F; Gasiorek J
    Acta Microbiol Pol B; 1975; 7(2):97-101. PubMed ID: 241212
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of the concentration of phosphorus, potassium, calcium and iron compounds on the microbial reduction of sulphates.
    Domka F; Gasiorek J
    Acta Microbiol Pol A; 1976; 8(1):57-64. PubMed ID: 937089
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Investigations on the microbial reduction of sulphates.
    Domka F; Gasiorek J
    Acta Microbiol Pol B; 1975; 7(1):61-72. PubMed ID: 235829
    [No Abstract]   [Full Text] [Related]  

  • 5. Study on dissimilatory reduction of sulphates.
    Domka F; Stawicki S; Szulczyński M
    Acta Microbiol Pol; 1979; 28(1):79-84. PubMed ID: 87119
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effect of organic substrate concentration on activity for microbiological reduction of sulfates.
    Domka F; Szulxzyński M
    Acta Microbiol Pol; 1979; 28(3):237-44. PubMed ID: 92173
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Contributions of fermentative acidogenic bacteria and sulfate-reducing bacteria to lactate degradation and sulfate reduction.
    Zhao Y; Ren N; Wang A
    Chemosphere; 2008 May; 72(2):233-42. PubMed ID: 18331751
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Thiosulfate as an intermediate product of bacterial sulfate reduction].
    Vaĭnshteĭn MB; Matrosov AG; Baskunov BP; Ziakun AM; Ivanov MV
    Mikrobiologiia; 1980; 49(6):855-8. PubMed ID: 7207258
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ethanol utilization by sulfate-reducing bacteria: an experimental and modeling study.
    Nagpal S; Chuichulcherm S; Livingston A; Peeva L
    Biotechnol Bioeng; 2000 Dec; 70(5):533-43. PubMed ID: 11042550
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Isolation and characterization of Desulfovibrio growing on hydrogen plus sulfate as the sole energy source.
    Badziong W; Thauer RK; Zeikus JG
    Arch Microbiol; 1978 Jan; 116(1):41-9. PubMed ID: 623496
    [No Abstract]   [Full Text] [Related]  

  • 11. ATP generation by electron transport in Desulfovibrio desulfuricans.
    Vosjan JH
    Antonie Van Leeuwenhoek; 1970; 36(4):584-6. PubMed ID: 5312617
    [No Abstract]   [Full Text] [Related]  

  • 12. Fractionation of sulfur isotopes by continuous cultures of Desulfovibrio desulfuricans.
    Chambers LA; Trudinger PA; Smith JW; Burns MS
    Can J Microbiol; 1975 Oct; 21(10):1602-7. PubMed ID: 1201506
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [A new non-spore forming thermophilic organism, reducing sulfates, Desulfovibrio thermophilus nov. sp].
    Rozanova EP; Khudiakova AI
    Mikrobiologiia; 1974; 43(6):1069-75. PubMed ID: 4449494
    [No Abstract]   [Full Text] [Related]  

  • 14. Biotransformation of phosphogypsum in media containing different forms of nitrogen.
    Rzeczycka M; Mycielski R; Kowalski W; Gałazka M
    Acta Microbiol Pol; 2001; 50(3-4):281-9. PubMed ID: 11930996
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Impact of nitrate-mediated microbial control of souring in oil reservoirs on the extent of corrosion.
    Nemati M; Jenneman GE; Voordouw G
    Biotechnol Prog; 2001; 17(5):852-9. PubMed ID: 11587574
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Desulfovibrio psychrotolerans sp. nov., a psychrotolerant and moderately alkaliphilic sulfate-reducing deltaproteobacterium from the Himalayas.
    Sasi Jyothsna TS; Sasikala Ch; Ramana ChV
    Int J Syst Evol Microbiol; 2008 Apr; 58(Pt 4):821-5. PubMed ID: 18398176
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Growth and cometabolic reduction kinetics of a uranium- and sulfate-reducing Desulfovibrio/Clostridia mixed culture: Temperature effects.
    Boonchayaanant B; Kitanidis PK; Criddle CS
    Biotechnol Bioeng; 2008 Apr; 99(5):1107-19. PubMed ID: 17929318
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Carbon and energy sources of biosynthesis in sulfate reducing bacteria].
    Sorokin IuI
    Mikrobiologiia; 1966; 35(5):761-6. PubMed ID: 6002773
    [No Abstract]   [Full Text] [Related]  

  • 19. Growth of sulfate-reducing bacteria with solid-phase electron acceptors.
    Karnachuk OV; Kurochkina SY; Tuovinen OH
    Appl Microbiol Biotechnol; 2002 Mar; 58(4):482-6. PubMed ID: 11954795
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Desulfovibrio of the sheep rumen.
    Howard BH; Hungate RE
    Appl Environ Microbiol; 1976 Oct; 32(4):598-602. PubMed ID: 984832
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.