These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
100 related articles for article (PubMed ID: 122932)
1. Structural relationship between "glutamic acid" and "lysine" forms of human plasminogen and their interaction with the NH2-terminal activation peptide as studied by affinity chromatography. Wiman B; Wallén P Eur J Biochem; 1975 Jan; 50(3):489-94. PubMed ID: 122932 [TBL] [Abstract][Full Text] [Related]
2. Physico-chemical and proenzyme properties of NH2-terminal glutamic acid and NH2-terminal lysine human plasminogen. Influence of 6-aminohexanoic acid. Claeys H; Vermylen J Biochim Biophys Acta; 1974 Apr; 342(2):351-9. PubMed ID: 4275496 [No Abstract] [Full Text] [Related]
3. Activation of human plasminogen by equimolar levels of streptokinase. Bajaj AP; Castellino FJ J Biol Chem; 1977 Jan; 252(2):492-8. PubMed ID: 137901 [TBL] [Abstract][Full Text] [Related]
4. The mechanism of activation of rabbit plasminogen by urokinase. Sodetz JM; Castellino FJ J Biol Chem; 1975 Apr; 250(8):3041-9. PubMed ID: 123529 [TBL] [Abstract][Full Text] [Related]
5. Physical and chemical properties of the NH2-terminal glutamic acid and lysine forms of human plasminogen and their derived plasmins with an NH2-terminal lysine heavy (A) chain. Robbins KC; Boreisha IG; Arzadon L; Summaria L J Biol Chem; 1975 Jun; 250(11):4044-7. PubMed ID: 123921 [TBL] [Abstract][Full Text] [Related]
6. Kinetic studies of the urokinase-catalysed conversion of NH2-terminal glutamic acid plasminogen to plasmin. Christensen U Biochim Biophys Acta; 1977 Apr; 481(2):638-47. PubMed ID: 139931 [TBL] [Abstract][Full Text] [Related]
7. The importance of the preactivation peptide in the two-stage mechanism of human plasminogen activation. Walther PJ; Hill RL; McKee PA J Biol Chem; 1975 Aug; 250(15):5926-33. PubMed ID: 1150667 [TBL] [Abstract][Full Text] [Related]
8. NH2-terminal structural motifs in staphylokinase required for plasminogen activation. Schlott B; Gührs KH; Hartmann M; Röcker A; Collen D J Biol Chem; 1998 Aug; 273(35):22346-50. PubMed ID: 9712854 [TBL] [Abstract][Full Text] [Related]
9. Release of an N-terminal peptide from human plasminogen during activation with urokinase. Rickli EE; Otavsky WI Biochim Biophys Acta; 1973 Jan; 295(1):381-4. PubMed ID: 4685077 [No Abstract] [Full Text] [Related]
10. Activation of human plasminogen by urokinase. Partial characterization of a pre-activation peptide. Walther PJ; Steinman HM; Hill RL; McKee PA J Biol Chem; 1974 Feb; 249(4):1173-81. PubMed ID: 4273519 [No Abstract] [Full Text] [Related]
12. Structural and functional characterization of mutants of recombinant single-chain urokinase-type plasminogen activator obtained by site-specific mutagenesis of Lys158, Ile159 and Ile160. Lijnen HR; Nelles L; Van Hoef B; Demarsin E; Collen D Eur J Biochem; 1988 Nov; 177(3):575-82. PubMed ID: 2973984 [TBL] [Abstract][Full Text] [Related]
13. Human plasminogen: in vitro and in vivo evidence for the biological integrity of NH2-terminal glutamic acid plasminogen. Collen D; Ong EB; Johnson AJ Thromb Res; 1975 Oct; 7(4):515-29. PubMed ID: 1081757 [No Abstract] [Full Text] [Related]
14. Lysine-50 is a likely site for anchoring the plasminogen N-terminal peptide to lysine-binding kringles. An SS; Carreño C; Marti DN; Schaller J; Albericio F; Llinas M Protein Sci; 1998 Sep; 7(9):1960-9. PubMed ID: 9761476 [TBL] [Abstract][Full Text] [Related]
15. Activation with plasmin of tow-chain urokinase-type plasminogen activator derived from single-chain urokinase-type plasminogen activator by treatment with thrombin. Lijnen HR; Van Hoef B; Collen D Eur J Biochem; 1987 Dec; 169(2):359-64. PubMed ID: 2961562 [TBL] [Abstract][Full Text] [Related]
16. Differences in the binding to fibrin of native plasminogen and plasminogen modified by proteolytic degradation. Influence of omega-aminocarboxylic acids. Thorsen S Biochim Biophys Acta; 1975 May; 393(1):55-65. PubMed ID: 124594 [TBL] [Abstract][Full Text] [Related]
17. Activation of human plasminogen by an insoluble derivative of urokinase. Structural changes of plasminogen in the course of activation to plasmin and demonstration of a possible intermediate compound. Wiman B; Wallén P Eur J Biochem; 1973 Jul; 36(1):25-31. PubMed ID: 4270055 [No Abstract] [Full Text] [Related]
18. Characterization of the NH 2 -terminal glutamic acid and NH 2 -terminal lysine forms of human plasminogen isolated by affinity chromatography and isoelectric focusing methods. Summaria L; Arzadon L; Bernabe P; Robins KC J Biol Chem; 1973 May; 248(9):2984-91. PubMed ID: 4700448 [No Abstract] [Full Text] [Related]
19. On the primary structure of human plasminogen and plasmin. Purification and characterization of cyanogen-bromide fragments. Wiman B; Wallén P Eur J Biochem; 1975 Sep; 57(2):387-94. PubMed ID: 126158 [TBL] [Abstract][Full Text] [Related]
20. NH2-terminal sequences of mammalian plasminogens and plasmin S-carboxymethyl heavy (A) and light (B) chain derivatives. A re-evaluation of the mechanism of activation of plasminogen. Robbins KC; Bernabe P; Arzadon L; Summaria L J Biol Chem; 1973 Oct; 248(20):7242-6. PubMed ID: 4270330 [No Abstract] [Full Text] [Related] [Next] [New Search]