These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
203 related articles for article (PubMed ID: 12296459)
41. A quantitative description of solute and fluid transport during peritoneal dialysis. Heimbürger O; Waniewski J; Werynski A; Lindholm B Kidney Int; 1992 May; 41(5):1320-32. PubMed ID: 1614047 [TBL] [Abstract][Full Text] [Related]
42. Determination of the solute removal index for urea by using a partial spent dialysate collection method. Cheng YL; Shek CC; Wong FK; Choi KS; Chau KF; Ing TS; Li CS Am J Kidney Dis; 1998 Jun; 31(6):986-90. PubMed ID: 9631843 [TBL] [Abstract][Full Text] [Related]
43. Online measurement of urea concentration in spent dialysate during hemodialysis. Olesberg JT; Arnold MA; Flanigan MJ Clin Chem; 2004 Jan; 50(1):175-81. PubMed ID: 14709645 [TBL] [Abstract][Full Text] [Related]
44. Intradialytic changes of serum magnesium and their relation to hypotensive episodes in hemodialysis patients on different dialysates. Elsharkawy MM; Youssef AM; Zayoon MY Hemodial Int; 2006 Oct; 10 Suppl 2():S16-23. PubMed ID: 17022745 [TBL] [Abstract][Full Text] [Related]
45. Is Fluorescence Valid to Monitor Removal of Protein Bound Uremic Solutes in Dialysis? Arund J; Luman M; Uhlin F; Tanner R; Fridolin I PLoS One; 2016; 11(5):e0156541. PubMed ID: 27228162 [TBL] [Abstract][Full Text] [Related]
46. Adequacy of hemodialysis in acute kidney injury: Real-time monitoring of dialysate ultraviolet absorbance vs. blood-based Kt/Vurea. Vasquez-Rios G; Zhang F; Scott MG; Vijayan A Hemodial Int; 2021 Jan; 25(1):43-49. PubMed ID: 33025733 [TBL] [Abstract][Full Text] [Related]
47. Hemodialysis blood access flow rates can be estimated accurately from on-line dialysate urea measurements and the knowledge of effective dialyzer urea clearance. Lindsay RM; Sternby J; Olde B; Persson R; Thatcher ME; Sargent K Clin J Am Soc Nephrol; 2006 Sep; 1(5):960-4. PubMed ID: 17699313 [TBL] [Abstract][Full Text] [Related]
48. Effect of cool vs. warm dialysate on toxin removal: rationale and study design. Maheshwari V; Lau T; Samavedham L; Rangaiah GP BMC Nephrol; 2015 Feb; 16():25. PubMed ID: 25885180 [TBL] [Abstract][Full Text] [Related]
49. [A flow divider which permits, during hemodialysis, the continuous collection of a representative sample of dialysate]. Fellay G; Gabriel JP Nephrologie; 1994; 15(1):33-5. PubMed ID: 8183416 [TBL] [Abstract][Full Text] [Related]
50. Solute kinetics with short-daily home hemodialysis using slow dialysate flow rate. Kohn OF; Coe FL; Ing TS Hemodial Int; 2010 Jan; 14(1):39-46. PubMed ID: 19758296 [TBL] [Abstract][Full Text] [Related]
51. Dialysis dose and nutrition assessment by optical on-line dialysis adequacy monitor. Luman M; Jerotskaja J; Lauri K; Fridolin I Clin Nephrol; 2009 Oct; 72(4):303-11. PubMed ID: 19825337 [TBL] [Abstract][Full Text] [Related]
52. A multicentre study of an enhanced optical method for measuring concentration of uric acid removed during dialysis. Jerotskaja J; Uhlin F; Lauri K; Tanner R; Luman M; Fridolin I Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():1477-80. PubMed ID: 19963503 [TBL] [Abstract][Full Text] [Related]
53. Evaluation of pre- and postdilutional on-line hemodiafiltration adequacy by partial dialysate quantification and on-line urea monitor. Lim PS; Lee HP; Kho B; Yu YL; Chang SC; Lin YY; Yang CC; Wang TH; Kuo SY; Lin LC Blood Purif; 1999; 17(4):199-205. PubMed ID: 10494022 [TBL] [Abstract][Full Text] [Related]
54. 4-Pyridoxic Acid in the Spent Dialysate: Contribution to Fluorescence and Optical Monitoring. Kalle S; Tanner R; Arund J; Tomson R; Luman M; Fridolin I PLoS One; 2016; 11(9):e0162346. PubMed ID: 27598005 [TBL] [Abstract][Full Text] [Related]
55. Evaluation of urea reduction ratio estimated from the integrated value of urea concentrations in spent dialysate. Ozaki M; Hori J; Okabayashi T Ther Apher Dial; 2014 Apr; 18(2):193-201. PubMed ID: 24720411 [TBL] [Abstract][Full Text] [Related]
56. The Removal of β2-Microglobulin in Spent Dialysate Cannot Be Monitored by Spectrophotometric Analysis. Donadio C; Calia D; Ghimenti S; Onor M; Colombini E; Fuoco R; Di Francesco F Blood Purif; 2015; 40(2):109-12. PubMed ID: 26183959 [No Abstract] [Full Text] [Related]
57. Assessment of dialysis adequacy using the dialysate urea monitor: preliminary experience of the dialysate urea monitor. Lee WC; Tsai CJ; Huang CC; Lee CC; Chien YS; Hu SA; Wu CH Ren Fail; 1997 Nov; 19(6):789-97. PubMed ID: 9415936 [TBL] [Abstract][Full Text] [Related]
58. Quantitating dialysis using two dialysate samples: a simple, practical and accurate approach for evaluating urea kinetics. Raj DS; Tobe S; Saiphoo C; Manuel MA Int J Artif Organs; 1997 Aug; 20(8):422-7. PubMed ID: 9323504 [TBL] [Abstract][Full Text] [Related]
59. Optical method for cardiovascular risk marker uric acid removal assessment during dialysis. Holmar J; Fridolin I; Uhlin F; Lauri K; Luman M ScientificWorldJournal; 2012; 2012():506486. PubMed ID: 22701094 [TBL] [Abstract][Full Text] [Related]
60. Con-Current versus Counter-Current Dialysate Flow during CVVHD. A Comparative Study for Creatinine and Urea Removal. Baldwin I; Baldwin M; Fealy N; Neri M; Garzotto F; Kim JC; Giuliani A; Basso F; Nalesso F; Brendolan A; Ronco C Blood Purif; 2016; 41(1-3):171-6. PubMed ID: 26764970 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]