These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
186 related articles for article (PubMed ID: 12297515)
1. Changes in oligomerization are essential for the chaperone activity of a small heat shock protein in vivo and in vitro. Giese KC; Vierling E J Biol Chem; 2002 Nov; 277(48):46310-8. PubMed ID: 12297515 [TBL] [Abstract][Full Text] [Related]
2. Mutants in a small heat shock protein that affect the oligomeric state. Analysis and allele-specific suppression. Giese KC; Vierling E J Biol Chem; 2004 Jul; 279(31):32674-83. PubMed ID: 15152007 [TBL] [Abstract][Full Text] [Related]
3. The identity of proteins associated with a small heat shock protein during heat stress in vivo indicates that these chaperones protect a wide range of cellular functions. Basha E; Lee GJ; Breci LA; Hausrath AC; Buan NR; Giese KC; Vierling E J Biol Chem; 2004 Feb; 279(9):7566-75. PubMed ID: 14662763 [TBL] [Abstract][Full Text] [Related]
4. Evidence for an essential function of the N terminus of a small heat shock protein in vivo, independent of in vitro chaperone activity. Giese KC; Basha E; Catague BY; Vierling E Proc Natl Acad Sci U S A; 2005 Dec; 102(52):18896-901. PubMed ID: 16365319 [TBL] [Abstract][Full Text] [Related]
5. The N-terminal arm of small heat shock proteins is important for both chaperone activity and substrate specificity. Basha E; Friedrich KL; Vierling E J Biol Chem; 2006 Dec; 281(52):39943-52. PubMed ID: 17090542 [TBL] [Abstract][Full Text] [Related]
6. It takes a dimer to tango: Oligomeric small heat shock proteins dissociate to capture substrate. Santhanagopalan I; Degiacomi MT; Shepherd DA; Hochberg GKA; Benesch JLP; Vierling E J Biol Chem; 2018 Dec; 293(51):19511-19521. PubMed ID: 30348902 [TBL] [Abstract][Full Text] [Related]
7. The heat shock gene, htpG, and thermotolerance in the cyanobacterium, Synechocystis sp. PCC 6803. Fang F; Barnum SR Curr Microbiol; 2003 Oct; 47(4):341-6. PubMed ID: 14629017 [TBL] [Abstract][Full Text] [Related]
8. A 16.6-kilodalton protein in the Cyanobacterium synechocystis sp. PCC 6803 plays a role in the heat shock response. Lee S; Prochaska DJ; Fang F; Barnum SR Curr Microbiol; 1998 Dec; 37(6):403-7. PubMed ID: 9806978 [TBL] [Abstract][Full Text] [Related]
9. Chaperone-like activity of the N-terminal region of a human small heat shock protein and chaperone-functionalized nanoparticles. Gliniewicz EF; Chambers KM; De Leon ER; Sibai D; Campbell HC; McMenimen KA Proteins; 2019 May; 87(5):401-415. PubMed ID: 30684363 [TBL] [Abstract][Full Text] [Related]
10. Probing the roles of the only universally conserved leucine residue (Leu122) in the oligomerization and chaperone-like activity of Mycobacterium tuberculosis small heat shock protein Hsp16.3. Dai H; Mao Q; Yang H; Huang S; Chang Z J Protein Chem; 2000 May; 19(4):319-26. PubMed ID: 11043937 [TBL] [Abstract][Full Text] [Related]
11. Site-directed mutations within the core "alpha-crystallin" domain of the small heat-shock protein, human alphaB-crystallin, decrease molecular chaperone functions. Muchowski PJ; Wu GJ; Liang JJ; Adman ET; Clark JI J Mol Biol; 1999 Jun; 289(2):397-411. PubMed ID: 10366513 [TBL] [Abstract][Full Text] [Related]
12. Specific sequences in the N-terminal domain of human small heat-shock protein HSPB6 dictate preferential hetero-oligomerization with the orthologue HSPB1. Heirbaut M; Lermyte F; Martin EM; Beelen S; Sobott F; Strelkov SV; Weeks SD J Biol Chem; 2017 Jun; 292(24):9944-9957. PubMed ID: 28487364 [TBL] [Abstract][Full Text] [Related]
13. A mutant small heat shock protein with increased thylakoid association provides an elevated resistance against UV-B damage in synechocystis 6803. Balogi Z; Cheregi O; Giese KC; Juhász K; Vierling E; Vass I; Vígh L; Horváth I J Biol Chem; 2008 Aug; 283(34):22983-91. PubMed ID: 18574246 [TBL] [Abstract][Full Text] [Related]
14. Structural and functional roles for beta-strand 7 in the alpha-crystallin domain of p26, a polydisperse small heat shock protein from Artemia franciscana. Sun Y; Bojikova-Fournier S; MacRae TH FEBS J; 2006 Mar; 273(5):1020-34. PubMed ID: 16478475 [TBL] [Abstract][Full Text] [Related]
15. Regulation of Hsp27 oligomerization, chaperone function, and protective activity against oxidative stress/tumor necrosis factor alpha by phosphorylation. Rogalla T; Ehrnsperger M; Preville X; Kotlyarov A; Lutsch G; Ducasse C; Paul C; Wieske M; Arrigo AP; Buchner J; Gaestel M J Biol Chem; 1999 Jul; 274(27):18947-56. PubMed ID: 10383393 [TBL] [Abstract][Full Text] [Related]
16. Chaperone function and mechanism of small heat-shock proteins. Fu X Acta Biochim Biophys Sin (Shanghai); 2014 May; 46(5):347-56. PubMed ID: 24449783 [TBL] [Abstract][Full Text] [Related]
17. Small heat-shock proteins: important players in regulating cellular proteostasis. Treweek TM; Meehan S; Ecroyd H; Carver JA Cell Mol Life Sci; 2015 Feb; 72(3):429-451. PubMed ID: 25352169 [TBL] [Abstract][Full Text] [Related]
18. Chaperone activity of cytosolic small heat shock proteins from wheat. Basha E; Lee GJ; Demeler B; Vierling E Eur J Biochem; 2004 Apr; 271(8):1426-36. PubMed ID: 15066169 [TBL] [Abstract][Full Text] [Related]
19. The essential role of the flexible termini in the temperature-responsiveness of the oligomeric state and chaperone-like activity for the polydisperse small heat shock protein IbpB from Escherichia coli. Jiao W; Qian M; Li P; Zhao L; Chang Z J Mol Biol; 2005 Apr; 347(4):871-84. PubMed ID: 15769476 [TBL] [Abstract][Full Text] [Related]
20. Characterization of novel sequence motifs within N- and C-terminal extensions of p26, a small heat shock protein from Artemia franciscana. Sun Y; MacRae TH FEBS J; 2005 Oct; 272(20):5230-43. PubMed ID: 16218954 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]